Лучи смерти: станет ли лазер настоящим оружием. Почему боевые лазеры не ставят на вооружение

Виктор Викторович Аполлонов - генеральный директор ООО “Энергомаштехника”, заведующий отделом Мощные лазеры Института общей физики им. А.М.Прохорова РАН. Доктор физико-математических наук, профессор, лауреат Государственных премий СССР (1982) и РФ (2002), академик АИН и РАЕН. Член Президиума РАЕН.

Автор - ведущий в мире ученый в области мощных лазерных систем и взаимодействия мощного лазерного излучения с веществом, автор более 1160 научных публикаций, из них 8 монографий, 6 глав в сборниках и 147 авторских свидетельств и патентов, воспитал 32 доктора и кандидата наук. Окончил с отличием МИФИ в 1970 г., факультет экспериментальной и теоретической физики. Общий стаж работ в области мощных лазеров 45 лет.

В зарубежных и российских СМИ все чаще появляются сообщения о том, что в США активно ведутся разработки лазерного оружия. Чего добились американцы? Как такое оружие может изменить современные способы вооруженной борьбы? Ведутся ли аналогичные работы в России? На эти и другие вопросы я постараюсь ответить в предлагаемой читателю статье.

Для начала хочу процитировать выдержку из статьи в американском журнале начала лазерной эры , который писал: «С момента открытия лазерного луча пошли разговоры о «лучах смерти», которые сделают ракеты и ракетную технику устаревшими». А теперь о том, как в этой сфере деятельности обстоят дела сегодня. В России всегда было важно не отстать от других более богатых партнеров-конкурентов.

Сейчас в США на смену химическим лазерам идут твердотельные (т/т) лазерные системы с полупроводниковой (п/п) накачкой. Огромное преимущество химических лазеров заключалось в отсутствии необходимости создания громоздкой и тяжелой энергетической установки для питания лазера, химическая реакция являлась источником энергии. Основными недостатками этих систем по сей день являются экологическая опасность и громоздкость конструкции. Исходя из этого, сегодня ставка делается на т/т лазеры, поскольку они гораздо надежнее, легче, компактнее, проще в обслуживании и безопаснее в эксплуатации, чем химические лазеры. Лазерные диоды, используемые для накачки активного тела лазера, легко совместимы с низковольтной ядерной и солнечной энергетикой и не требуют трансформации напряжения. Исходя из этого, авторы многих проектов считают возможным получить большую выходную мощность в случае т/т лазера, размещенного в том же объеме авиационного носителя. Ведь твердое тело имеет на много порядков величины большую плотность в сравнении со средой химического лазера. Вопрос энергетической накачки активной среды представляется особенно важным в условиях длительной эксплуатации мобильных комплексов.

Сегодня уровень разработок т/т лазеров в США приближается к значению выходной мощности - 500 кВт. Однако достижение существенно больших значений выходной мощности лазера в стандартной и уже отработанной многомодульной геометрии представляется труднореализуемой задачей. Основная проблема в достижении большего уровня мощности для т/т лазера с п/п накачкой заключается в необходимости полного переосмысления технологии изготовления активных элементов лазерных мобильных комплексов. Лазеры мощностью 100 кВт компаний: Textron и Northrop Grumman состоят из большого числа лазерных модулей, что при увеличении выходной мощности комплекса до уровня в несколько МВт приведет к многим десяткам таких модулей, что для мобильных комплексов представляется нереализуемой задачей.

Компания «Нортроп» уже представила работоспособный тактический т/т лазер мощностью 105 кВт и намерена существенно увеличить его мощность. Впоследствии «гиперболоиды» предполагается устанавливать на наземные, морские и воздушные платформы. Тем не менее, речь в данном случае идет о тактическом ЛО, т. е. о системах, работающих на небольших дальностях. Мощность лазера - это есть выделяемая лазером энергия в единицу времени. При взаимодействии с объектом ее надо сравнивать с потерями на теплопроводность материала, на нагрев воздушного потока при движении и с долей лазерной мощности, идущей на отражение от объекта. Отсюда видно, что греть объект воздействия можно и лазерной указкой, но греть придется очень долго. В самом общем случае мощность лазера обеспечивается за счет эффективности накачки активной среды и ее размеров. Таким образом, становится ясно, что ввод максимально возможной энергии должен осуществляться в предельно короткие сроки. Но здесь есть очень важное ограничение - образование плазмы на поверхности объекта, затрудняющей прохождение излучения.

Существующие мощные лазерные системы сегодня работают именно в этом доплазменном режиме. Но можно приручить и плазменный режим ввода энергии, но для этого нужно найти такой временной импульсно-периодический (И-П) режим, при котором импульсы излучения длятся очень короткое время и за время между импульсами плазма успевает вновь стать прозрачной и следующая порция излучения приходит на освободившуюся от плазмы поверхность. Но для поддержания высокого уровня полной энергии приходящей на объект частота этих импульсов должна быть очень высокой, несколько десятков-сотен килогерц. Сегодня в мире активно используются два режима лазерного воздействия на объект: силовое воздействие и функциональное. При силовом механизме воздействия в объекте прожигается отверстие или отрезается какая-либо часть конструкции. Это приводит, например, к взрыву топливного бака или к невозможности дальнейшего функционирования объекта как единой системы, например, самолет с отрезанным крылом. Для реализации силового поражения на больших дальностях нужны огромные мощности. Так, проекты «Стратегической оборонной инициативы» при дальности поражения более тысячи километров требовали уровня мощности лазера - 25 МВт и более. Уже тогда, в 1985 году, на конференции в Лас-Вегасе, где был дан старт полномасштабным исследованиям в области создания мощного ЛО, нам, членам делегации СССР, было понятно, что в ближайшие 30–40 лет стратегическое мобильное ЛО не будет создано.

Но есть и другой механизм - функциональное воздействие, или, как его называют в США, «умное воздействие». При этом механизме воздействия речь идет о тонких эффектах, мешающих противнику выполнить поставленную задачу. Речь идет об ослеплении оптико-электронных систем военного оборудования, об организации сбоев в работе электроники бортовых компьютеров и навигационных систем, о реализации оптических помех в работе операторов и пилотов мобильного оборудования и т. п. Это уже пришло и на стадионы, где лазерными указками пытаются слепить вратарей. При этом механизме резко увеличивается дальность эффективного воздействия за счет резкого снижения необходимых плотностей мощности лазерного излучения на цели, даже при существующем незначительном уровне выходных мощностей лазерных комплексов. Именно этот механизм срыва выполнения поставленных военных задач предлагал в своем письме в директивные органы акад. А.М.Прохоров аж в 1973 г. И именно этот механизм сегодня доминирует в сфере применения ЛО. Так что еще раз убеждаемся: «Есть пророки в своем отечестве!».

ЛО представляет собой оружие, которое использует высокоэнергетичное направленное излучение, генерируемое лазерными системами. Поражающие факторы на цели определяются термическим, механическим, оптическим и электромагнитным воздействием, которое с учетом плотности мощности лазерного излучения, может привести к временному ослеплению человека или оптико-электронной системы, к механическому разрушению (расплавлению или испарению) корпуса поражаемого объекта (ракеты, самолета и др.) к организации сбоев в работе электроники бортовых компьютеров и навигационных систем. При работе в импульсном режиме одновременно, при достаточно большой концентрации импульсной мощности на объекте, воздействие сопровождается и передачей механического импульса, что обусловлено взрывным возникновением плазмы. Сегодня наиболее приемлемыми для боевого применения считаются лазеры т/т и химические. Так, т/т лазер военные специалисты США рассматривают как один из наиболее перспективных источников излучения для систем ЛО авиационного базирования, предназначенного для борьбы с баллистическими и крылатыми ракетами морского и воздушного базирования. Важной задачей является и задача подавления оптико-электронных средств (ОЭС) ПВО и задача защиты своих самолетов - носителей ядерного оружия от управляемых ракет противника. В последнее десятилетие отмечается существенный прогресс в области создания ЛО, что обусловлено переходом от ламповой накачки его активных элементов к накачке с помощью лазерных диодов. Кроме того, возможность генерирования излучения на нескольких длинах волн позволяет использовать т/т лазеры не только для воздействия на цель, но и для передачи информации в различных системах оружия, например, для обнаружения, распознавания целей и точного наведения на них луча мощного лазера.

А КАКИЕ ЕЩЁ ВАЖНЫЕ РАЗРАБОТКИ В ЭТОМ ЖЕ НАПРАВЛЕНИИ ВЕДУТСЯ В США?

Другое и очень важное направление в применении тактических маломощных лазеров продвигает компания «Raytheon», сделавшая ставку на волоконные лазерные системы. Совершенствование т/т лазерной техники привело к созданию нового типа устройств: оптических усилителей и лазеров на так называемых активных волокнах. Первые волоконные лазеры были созданы на кварцевых волокнах, насыщенных ионами неодима. В настоящее время генерация получена в кварцевых волокнах с редкими землями: неодимом, эрбием, иттербием, туллием, празеодимом. Наиболее распространены сегодня в мире волоконные лазеры с ионами неодима и эрбия. 100-киловаттный волоконный лазерный комплекс уже интегрирован с зенитным артиллерийским комплексом. Создана и его сухопутная версия. Недавние испытания в Персидском заливе подтвердили высокую эффективность волоконного лазера при сбивании беспилотников (дронов) на небольших расстояниях 1,5–2 км и уничтожении специальных целей, установленных на небольших судах.

Здесь следует сказать несколько слов о принципе работы такой «интеграции». Семь волоконных лазеров мощностью 15 кВт размещаются в стволе артиллерийского комплекса, взятого со всей своей инфраструктурой. С помощью системы наведения излучение концентрируется на беспилотнике и поджигает его. Дальность поражения в пределах 1,5–2,0 км. Это представляется весьма важной технологией, учитывая наши прошлые проблемы с дронами во время конфликта 2008 г.

Еще следует отметить разработанные США химические HF/DF лазеры как наиболее перспективные для боевого применения в космическом пространстве. У лазера на HF источником энергии является энергия химической цепной реакции между фтором и водородом. В результате образуются возбужденные молекулы фтористого водорода, которые испускают инфракрасное излучение с длиной волны 2.7 мкм. Но такое излучение активно рассеивается молекулами воды, содержащимися в виде пара в атмосфере. Был разработан также лазер на DF, работающий на длине волны излучения ~4 мкм, для которого атмосфера почти прозрачна. Однако, удельное энерговыделение этого лазера примерно в полтора раза ниже, чем на HF, а значит, требует больше топлива. Работа над химическими лазерами как возможным средством космического ЛО ведется в США с 1970 года. К ЛО предъявляются высокие требования по скорострельности, оно должно затрачивать на поражение каждой цели не более нескольких секунд. При этом лазерная установка должна иметь источник дополнительной энергии, обладать устройствами поиска, целеуказания и наведения на цель, а также контроля ее поражения.

Первая успешная попытка перехвата ракет с помощью лазера была проведена в США в 1983 году, лазер был установлен на летающей лаборатории. В другом эксперименте с самолета были последовательно выпущены пять ракет класса «воздух-воздух» . Инфракрасные головки ракет были ослеплены лазерным лучом и сбились с курса. Важно также отметить и крупномасштабные эксперименты по функциональному («умному») поражению целей, которые были проведены на полигоне Белые пески в Нью-Мехико с использованием лазерного комплекса «MIRACL» мощностью 2,2 МВт. В качестве целей использовались спутники США с комплектом оптоэлектронных систем (ОЭС) на высоте 400 км и модели российских спутников. Результаты экспериментов были оценены специалистами как весьма успешные. Следует отметить, что экологические проблемы содержания данного испытательного стенда на земле не закрывают глаза военных аналитиков на гигантские преимущества HF/DF комплексов в космосе, где сброс вредных компонентов в открытое пространство не представит с их точки зрения больших проблем.

Одновременно с этим диапазон длин волн, генерируемый данным видом химического лазера, представляется чрезвычайно важным для подавления широкого спектра ОЭС. Тем не менее, дальнейшее масштабирование мощности данного типа лазера представляется труднореализуемым.

Другой важной разработкой ЛО в США следует считать уже хорошо известный кислород-йодный лазер. В 2004 г. на авиабазе Эдвардс в Калифорнии компания «Northrop Grumman» провела первое испытание боевого лазера воздушного базирования. Испытания тогда прошли только на земле - установленный на макете самолета лазер включился всего на долю секунды, однако работоспособность ЛО была доказана. В данном типе лазера мощный поток фотонов возникает в результате химической реакции.

Эти фотоны и формируют лазерный луч, длина волны которого -1,315 мкм хорошо подходит для военных целей, такой луч хорошо преодолевает облачность. Предполагаемая длительность каждого выстрела - 3–5 секунд. Целью лазерного воздействия является топливный бак ракеты противника - в доли секунды луч разогревает его и бак взрывается. Полномасштабные стрельбовые испытания данного комплекса по воздушным мишеням, имитировавшим баллистическую ракету на разгонном участке, были проведены в 2007 году - на режиме малой мощности, и в январе-феврале 2010 года - уже на режиме большой мощности.

Структурно комплекс YAL-1 включает самолет-носитель (переоборудованный Boeing 747 -400 °F); непосредственно боевую лазерную систему на основе химического кислородно-йодного лазера мегаваттного класса, включающую шесть установленных в хвостовой части рабочих модулей массой по 3000 кг каждый и иные, обеспечивающие работоспособность комплекса, системы и оборудование. Практически в огромном самолете не остается свободного места.

Кроме этого под эгидой Агентства по перспективным оборонным исследованиям (DARPA), США разработали еще и много других систем, например, лазерную систему под обозначением HELLADS (Противоракетная система театра военных действий на базе высокоэнергетичного лазера). Данная система использует 150-киловаттный лазер и предназначена для обороны районов сосредоточения войск и важных объектов от поражения управляемыми и неуправляемыми ракетами и артиллерийскими снарядами среднего и большого калибра.

В июне 2010 года ВМС США также провели эксперимент, в котором был задействован еще один «автоматизированный лазерный стрельбовой комплекс», получивший обозначение LaWS. Данный комплекс включает в себя три лазера, два из которых для наведения на цель и один боевой. В ходе эксперимента с его помощью над морем были успешно сбиты четыре беспилотные мишени. Сделанные во время испытаний видеоролики с большим успехом демонстрировались на стенде «Рейтеон» во время аэрокосмического салона «Фарнборо-2010» . Сегодня американский флот уже экспериментально изучает в Персидском заливе возможность поражения с помощью ЛО не только беспилотников, но и маломерных надводных целей.

Следует еще упомянуть и о тактическом комплексе «Скайгард», который создан на базе демонстрационного образца наземного тактического комплекса. Мобильный комплекс ЛО имеет мощность излучения до 300 кВт, а уменьшенные масса и габариты позволяют транспортировать его по земле и перебрасывать по воздуху. Основой комплекса является лазерная установка на базе химического фтор-дейтериевого лазера с рабочей длиной волны 3,8 мкм. В состав комплекса входят также радиолокационная станция управления стрельбой, командный пункт и вспомогательные средства.

Интересным представляется вопрос, а насколько можно доверять сообщениям американских СМИ об успешных разработках ЛО и достигнутых результатах?

Мне представляется, что в полной мере, хотя иногда для усиления эффекта на публику, от которой зависит финансирование проектов, бывают и талантливые инсценировки с привлечением динамита, высокого давления и др. штучек. На эти спектакли с удовольствием ходят и журналисты, которые потом делают свою часть работы по вовлечению других стран в траты на получение не всегда убедительного результата. Но такие представления, как мы хорошо знаем, бывают не только в США.

КАКИЕ ЖЕ ПРОБЛЕМЫ РАЗВИТИЯ БОЕВЫХ ЛАЗЕРОВ СТОЯТ НАИБОЛЕЕ ОСТРО?

Прежде всего - это отсутствие абсолютно новой элементной базы для создания новых образцов ЛО. Так, например, дальнейшее совершенствование т/т лазеров с п/п накачкой потребовало развития технологии лазерной керамики, а это в свою очередь требует времени и значительных средств. Еще один пример связан с развитием технологии мощных лазерных диодных линеек и матриц. США по данным японских СМИ потратили на эти цели уже более 100 млрд. долларов и совершенствование технологии продолжается. Лазерная диодная линейка - это единый монолитный излучающий прибор, содержащий до 100 лазерных структур, полный линейный размер которого составляет 10 мм. Соответственно, лазерная диодная матрица - это излучающий прибор, собранный из большого числа лазерных диодных линеек.

В иностранной и российской научной литературе часто можно встретить термины «стратегические» и «тактические» ЛО. Важно понимать по каким критерям они отличаются? Здесь главным параметром выступает мощность лазерного комплекса, с которой тесно связана дальность эффективного применения. Часто бывает так, строят стратегический комплекс, а он оказывается всего лишь тактическим. Так произошло и с последней и наиболее затратной разработкой YAL-1A , она первоначально была рассчитана на дальность в 600 км, а на практике продемонстрировала требуемую эффективность только на дальности 130 км.

Следует заметить, что тактические лазерные комплексы на меньших уровнях мощностей в США уже весьма близки к тиражированию и реальному применению. Так что эксперты Пентагона и не думают о закрытии многих «недотянувшихся до планки» лазерных программ и всемерно способствуют их дальнейшему развитию. Прогресс не остановить! Лазерам в Июне этого года исполнилось 55 лет . В прошлогоднем докладе DARPA говорится о глобальном изменении «правил игры» после широкого распространения «оружия направленной энергии», которое превратит традиционные символы военной мощи в устаревший хлам на уровне пушечных ядер и кавалерии. Стратегическая авиация вышла на приличный уровень за 110 лет. Так что у стратегического ЛО еще есть в запасе 55 лет. Но в действительности его создание произойдет гораздо быстрее.

Россия, по мнению многих экспертов и данным СМИ, была первой страной, достигшей в этой области заметных результатов. Как сообщило РИА «Новости», комментируя сообщения об успешных испытаниях компанией «Боинг» химического лазера на самолете, Россия начала заниматься разработками в области тактического ЛО одновременно с США и имеет в своем арсенале опытные образцы высокоточных боевых химических лазеров.

Из слов агентства следует, что «Первая подобная установка была испытана в СССР еще в 1972 году. Уже тогда отечественная мобильная „лазерная пушка“ была способна успешно поражать воздушные цели. С тех пор возможности России в данной области значительно возросли. Также было отмечено, что в настоящее время на эти работы выделяется значительно больше средств, что должно привести к дальнейшим успехам. Однако хорошо известный специалистам период научно-технического ненастья, после подписания М.С.Горбачевым на Байконуре приказа о закрытии всех работ по ЛО, нанес лазерным исследованиям в стране значительный ущерб . Сразу после этого события байки на тему „ЛО - это блеф“ стали активно распространяться в печати. В итоге вокруг боевых лазеров в нашей стране сформировался эпический набор мифов, препятствующих дальнейшему развитию исследований в этой области. Большин­ство из них было построено по принципу -либо сознательная ложь, либо старательное превращение мухи в слона.

На самом деле эффективная помощь лазеров на поле боя - реальна, а армия, которая сможет обзавестись ими, получит вну­шительное преимущество. Так, например, ави­ация, способная активно обороняться от зенитных ракет и ракет воздух-воздух с помощью ЛО, станет в гораздо меньшей сте­пени уязвимой для средств ПВО. И таких примеров - очень много. Речь в случае авиации может вестись о лазерном подавлении оптико-электронных систем наведения ракет на цель. При этом, важно понимать, что развитие лазерных технологий является критически важным вовсе не для американцев, а в большей степени для нас, для России! Боевые лазеры - это очевидный для сегодняшней армии ассиметричный ответ на превосходство Запада по развитию высокоточного оружия. „Идеология“ послед­него утверждения в предельно грубой форме сво­дится к тому, что наш потенциальный технологически продвинутый противник вместо высыпания десятков болванок „по площади“ будет точно „укладыва­ть“ на наши головы единичный, хотя и гораздо более дорогой боеприпас, вспомните Югославию. Однако, такая схема особенно уязвима по отно­шению к лазерным оборонительным системам, которым все равно, что „жечь“ - архаический снаряд за две сотни долларов или дорогущую уль­трасовременную ракету. При этом количество этих высо­коточных снарядов на борту носителя не столь велико, а их стоимость - в сотни раз больше, чем у самого дорогостоящего лазерного „выстрела“.

Несмотря на международно установленные запреты ЛО усилиями США рано или поздно будет выведено в космос. Таковы реалии развития событий в мире в последние годы. Космос, по оценке американских военных специалистов, является высшим приоритетом и передним рубежом в уже происходящих в мире конфликтных ситуациях. Он рассматривается в качестве потенциального театра военных действий, на котором должно быть обеспечено безоговорочное преимущество США над любым противником.

Во многих опубликованных документах США акцентируется внимание на том, что, только овладев приоритетом в космосе во всех его формах, можно оставаться политическим, экономическим и военным лидером в мире и доминировать в военных конфликтах будущего. Американские специалисты считают приоритетными работы по созданию средств контроля космического пространства, перехвата, инспекции и вывода из строя ИСЗ противника, а так же работы по созданию систем обнаружения воздействия на собственные ИСЗ и их защиты от такого воздействия. В недалеком будущем стратеги США допускают возможность появления разнообразных противоспутников, выводимых на орбиты скрытно или под видом ИСЗ иного назначения. Миниатюрный космический аппарат (КА) (боевой беспилотный космоплан США X-37B) с секретной миссией был запущен 11 декабря 2012 года и побил свой собственный рекорд 26 марта 2014 года. Предыдущий его рекорд составлял 469 дней на околоземной орбите. Такое предназначение-КА полностью соответствует документу „Национальная космическая политика США“ 2006 года, провозглашающему право США частично распространить национальный суверенитет на космическое пространство. Важное место среди возможных видов эффективных средств борьбы в космосе американскими стратегами отводится и ЛО космического базирования.

В соответствии с доктриной США под аппараты такого типа будут использоваться и для контроля космического пространства, включая идентификацию, инспекцию и уничтожение-КА противника, а также эскортирование своих крупных-КА в интересах их защиты. Именно в таких сферах планируется использование перспективных лазерных разработок, необходимых для осуществления будущих космических операций. Тот же документ говорит, что США будут выступать против разработки новых правовых режимов или иных ограничений, целью которых будет прекращение или ограничение доступа США в космос или его использование. Cоглашения или ограничения по контролю над вооружениями не должны нарушать право США осуществлять исследования, разработку, испытания, деятельность, а также иные действия в космосе в целях национальных интересов. В этой связи министру обороны США предписывается „создать потенциал, планы и варианты для обеспечения свободы действий в космосе, а также для лишения противника такой свободы действий“. Яснее, четче сказать трудно.

Одной из важнейших задач, решаемых при создании новых образцов вооружения, в настоящее время является противодействие средствам воздушно-космического нападения (ВКН) противника, непрерывное развитие и совершенствование которых делает задачу разработки средств борьбы с ними чрезвычайно важной и актуальной. По мнению отечественных и зарубежных специалистов, к наиболее перспективным средствам борьбы со средствами ВКН нового поколения следует отнести лазерные. Создание сверхмощного ЛО открывает новые возможности для борьбы с некоторыми видами средств ВКН, эффективное противодействие которым становится проблематичным с использованием традиционных средств ПВО и ПКО. Подлетное время, в этом ключ к пониманию ситуации. С приближением к нашим границам ракетных комплексов потенциального противника это критически важное время резко уменьшается. Помощь в восстановлении паритета можно искать в реализации локальной защиты особо важных для обороноспособности страны объектов на основе лазерных комплексов, способных к мгновенному ответу.

Эта тенденция находится, как сейчас модно говорить, в тренде и важно учитывать, что в США и других странах в настоящее время интенсивно ведутся масштабные работы по созданию стратегических комплексов ЛО для поражения (подавления) воздушно-космических целей. Это, конечно же, Франция, Германия, Англия, Израиль, Япония, которые уже давно присутствуют на рынке лазерных технологий и достаточно энергично занимается проблемой создания эффективного боевого ЛО, способного поражать воздушно-космические цели. Израильское правительство, в частности, очень заинтересовано в обладании таким средством для борьбы с ракетами, которые используют соседствующие с ним исламские группировки для обстрела территории Израиля. В этой связи был создан корпорацией TRW по заказу американской армии и израильского министерства обороны мобильный тактический высокоэнергетичный химический лазер. С его помощью была сбита ракета реактивной системы залпового огня типа „Катюша“. Испытания были проведены в штате Нью - Мехико. По данным разработчиков, химический лазер генерирует мощный луч, радиус действия которого может достигать десятков и даже сотен километров.

Это и Южная Корея, которая, как сообщают международные СМИ также создает ЛО, которое будет способно выводить из строя ракетные и артиллерийские системы КНДР. Мощная лазерная установка разрабатывается группой исследователей из министерства обороны и нескольких южнокорейских военных компаний. Цель заключается в передаче этого ЛО армии для использования в качестве средства обороны в случае применения Северной Кореей ракет и дальнобойной артиллерии.

Это и Япония, которая в целях защиты от северокорейских баллистических ракет, разрабатывает мощный лазер, способный их сбивать. По мнению японского министерства обороны, ЗРК Patriot должен поражать ракеты в атмосфере, а ЛО - сразу после пуска на начальном участке траектории полета. Именно по этой схеме ведутся работы и в США - кураторе этих лазерных программ.

Китай, по данным американской прессы, также как и другие высокотехнологичные страны обладает ЛО. Недавняя публикация в США информации о попытке ослепления их-КА военными Китая, тому возможное подтверждение. Создаются и лазерные комплексы, способные сбивать ракеты на низких высотах. Лазерным лучом, при этом предполагается выведение из строя системы управления ракеты.

По мнению экспертов и данным СМИ, СССР был первым, достигшим в этой области заметных результатов. Славные успехи прошлого отечественных создателей ЛО подтверждаются следующими хорошо известными фактами.

В 1977 г. в ОКБ им. Г.М.Бериева были начаты работы по созданию летающей лаборатории „1А“, на борту которой размещалась лазерная установка, предназначенная для исследования распространения лучей в верхних слоях атмосферы. Эти работы проводились в широкой кооперации с предприятиями и научными организациями всей страны, основным из которых являлось ЦКБ „Алмаз“, возглавляемое доктором технических наук, академиком Б.В.Бункиным. Базовым самолетом для создания летающей лаборатории под индексом А-60 был выбран Ил-76 МД, на котором были проведены значительные доработки, изменившие его внешний вид. Впервые летающая лабораторию „1А“ поднялась в воздух в 1981 г. В конце 1991 г. была поднята в воздух следующая летающая лаборатория"1А2» СССР-86879 . На её борту размещался новый вариант специального комплекса, модифицированного с учетом предыдущих испытаний. По данным источника, приведенного ниже, в конце 60 гг. в местечке Сары-Шаган (Казахстан) была построена лазерная установка «Терра-3» .

В интервью газете «Красная звезда» один из создателей советской программы военных лазеров профессор Петр Зарубин отметил, что к 1985 г. наши ученые точно знали, что в США не могут создать компактный боевой лазер, а энергия самого мощного из них не превышала тогда энергии взрыва малокалиберного пушечного снаряда. В то время на установке уже был локатор, работу которого в 1984 г. предлагалось проверить на реальных космических объектах, находящихся на орбите. Хорошо освещены в печати и разработки ЛО, проведенные в НПО «Астрофизика», руководимом в то время Н.Д.Устиновым . Состояние лазерных программ последнего времени хорошо охарактеризовал бывший начальник Генерального штаба Ю. Н. Балуевский: «Могу уверенно сказать, что развитие военных технологий и создание современных форм эффективного ЛО развивается параллельно и находится примерно на одинаковом уровне во всех тех странах, которые имеют возможность его развивать . Высказывание очень хитрое, из него не вполне ясно имела ли Россия возможность все эти трудные годы в полной мере развивать лазерные технологии и современные формы ЛО. Конечно, значительное сокращение финансирования лазерных программ имело место быть, но значительный отрыв от остального мира в понимании проблем мощных лазеров в прежние годы и весьма эффективные НИР-овские программы позволили сохранить потенциал российской лазерной науки и в некоторых направлениях исследований опять значительно уйти вперед. Это в полной мере относится к волоконной и дисковой технологиям, а также к новым временным режимам генерации лазерного излучения для мощных систем. Исключительно важной представляется и разработка новых физических механизмов воздействия, определяемых этими новыми режимами.

Важно отчетливо понимать, что происходит сегодня в этой критически важной области высоких технологий. На сегодняшний день ЛО представляется одним из самых перспективных и наиболее быстро развивающимся оружием в мире. Объектами поражения для ЛО могут быть высокотехнологичная техника, военная инфраструктура противника и даже его экономический потенциал. И все же, боевое предназначение, существующего ЛО на данный момент, пока только тактическое. Однако наращивание мощности тактических лазеров, происходящее за рубежами отечества и появление новых идей в его использовании, например, совмещение мощных лазеров с возможностями геофизики, может привести к качественному скачку - превращению ЛО и в грозное геофизическое оружие .

Россия неоднократно оказывалась в ситуации, когда нужно было «пролезать в игольное ушко». Вот и сейчас обстановка вокруг России складывается довольно скверным образом. Надо совместными усилиями преодолеть благодушие последних двадцати лет. И мы его преодолеем, нет сомнения. Но для этого нужно вырваться из плена продолжающегося копирования многих разработок тактических лазеров США - по-прежнему неэффективных, громоздких и не позволяющих даже в глубокой перспективе достичь стратегических целей, стоящих перед воздушно-космической обороной (ВКО) Страны. Есть много различных сред для создания эффективного ЛО. Мировая лазерная наука начала свое восхождение с твердого тела и, похоже, закончит именно твердым телом при поиске конструкций с минимальным отношением веса к мощности системы - кг/кВт, важным для мобильных применений мощных и сверхмощных лазерных комплексов для гражданских и военных применений .

Сравнение данного отношения для газоразрядных, газодинамических, химических лазеров и лазеров на парах щелочных металлов с аналогичным отношением для нового поколения твердотельных лазеров говорит о безусловном приоритете последних. Ведь в случае достижения этим отношением величины существенно меньшей 5 кг / кВт можно уверенно говорить об оснащении практически всей авиации (самолеты и вертолеты) и всего подвижного состава поля боя и средств морского базирования тактическим (возможно, в перспективе и стратегическим) лазерным оружием! Для всех перечисленных выше лазеров величина отношения веса системы к ее мощности оказывается значительно больше указанной выше величины.

Компания «Локхид - Мартин» уже заявила о достижении соотношения 5 кг/кВт для современных твердотельных лазерных систем и видит перспективу его дальнейшего снижения. В случае волоконных лазерных систем, действие которых недавно было продемонстрировано в Персидском заливе, это мало что меняет. В силу малости выходного зрачка волокна (сотни микрон) импульсно - периодический (И-П) режим с большой энергией импульсов принципиально невозможен. А значит, возможно лишь использование традиционного и абсолютно малоэффективного режима воздействия, с которым и мы и американцы уже «наигрались» во времена СОИ. Отсюда и навязчивая реклама волоконных лазеров в зарубежных средствах массовой информации.

Но есть и другой «современный» твердотельный лазер - дисковый лазер . Этой идее акад. Н.Г.Басова правда уже 52 года, но именно этот принцип построения мощных лазерных комплексов оказывается сегодня и надолго в будущем доминирующим. При этом же, весьма выгодном соотношении < 5кг / кВт этот конструктивный принцип позволяет реализацию высокоэнергетичного И-П режима, т. к. апертура дискового лазера имеет диаметр порядка 1 см. Для увеличения средней мощности системы несколько дисков складываются в оптическую систему «ZIG-ZAG» , значение средней мощности такого модуля сегодня уже составляет 50 кВт. Модули, как и в случае волоконных систем, выстраиваются параллельно и мощность складывается на цели. Исходя из приведенных цифр видно, что 100 кВт лазер, компания «Локхид - Мартин» его называет «Thin-ZAG» , будет весить менее 500 кг!!! Параллельное сложение модулей ведет к увеличению общей апертуры системы и, следовательно, к возможности увеличения энергии импульсов в периодической последовательности, что качественно меняет механизм взаимодействия, позволяя многие новые эффекты на мишени.

Лазерные источники значительно большей мощности нужны для выполнения задач ВКО. Но от дисковой геометрии модулей мощностью даже в 75 кВт (компания «Локхид - Мартин» планирует это увеличение за счет качества отражающих покрытий) до уровня мощности всей системы 25 МВт дистанция гигантского размера. Сложить мощность более 100 модулей в единый луч в случае мобильного комплекса не представляется возможным. В чем же трудность, о которой много лет назад говорил акад. Н.Г.Басов? Усиленное спонтанное излучение («УСИ» - сброс энергии вдоль диаметра диска) мешает существенно увеличить его апертуру. А если найти решение проблемы подавления УСИ, то при апертуре с диаметром 50 см можно серьезно говорить о сверхкомпактном лазерном комплексе со средней мощностью 10 МВт. Другая проблема, о которой говорил академик - охлаждение диска. Эта проблема была нами решена уже давно при создании силовой оптики для мощных лазеров мегаваттного класса. Недавно нам удалось найти решение и этой грозной проблемы - подавление УСИ. Теперь можно смело представить себе авиационный носитель с лазерным комплексом мощностью 10 МВт на борту, эффективно решающим задачи лазерной чистки космоса и ВКО на стратегических дальностях. И это будет прорыв в решении задачи укрепления обороноспособности Государства!

Вместе с тем надо начать активно бороться с анти-пропагандой. Например такой, как: «Лазеры - это очень дорогие игрушки, они не способны решать какие-либо оборонные задачи, за последние 55 лет они мало в чем изменились и т. п. «. Причины такой обстановки вокруг лазеров вполне очевидны:

Во-первых , весьма успешная советская лазерная программа 70-80-х была буквально «зарезана» в начале 90-х как неперспективная - и персонажи, сделавшие это, по понятным причинам не слишком жаждут отвечать за свои конъюнктурные решения, и занимаются сегодня в значительной степени более прибыльным и безопасным для карьеры бизнесом;

Во-вторых , если за производством традиционных видов вооружения в нашей стране маячат бизнес - интересы вполне определенных групп влияния, то лазерного лобби в нашей стране практически не существует, т. к. иных уж нет, а те далече;

B-третьих , значительная часть российской политической элиты всегда готова закрыть глаза на усиление возникающей «ассиметрии» в области стратегических вооружений просто для того, чтобы не раздражать «заокеанских партнеров» и всегда иметь гарантированный доступ к своим деньгам в западных банках;

В-четвертых , продолжать бороться за интересы обороноспособности страны сегодня не так уж и безопасно для личной карьеры и здоровья. Нужно обладать завидным мужеством, большим научным кругозором, интуицией и специальными знаниями в данной области высоких технологий, а также хорошим видением перспективы дальнейшего развития стратегической обстановки в мире для отстаивания своей позиции в современных условиях.

Уже очевидно, что в мире разворачивается «лазерная» технологическая гонка. Наиболее развитые страны, опираясь на свое технологическое преимущество, направляют многомиллиардные средства на разработку высокотехнологичных лазерных систем следующих поколений. Их вложения в новые технологии создания ЛО просто не сопоставимы с тем, что делаем мы. Они в десятки раз больше. Именно о необходимости ускоренного развития высоких технологий в своем выступлении на расширенном заседании Госсовета говорил Президент России В. В. Путин . В этой связи важно отметить и мнение американских специалистов, заключающееся в том, что сегодня одним из наиболее эффективных средств завоевания технологического превосходства в мире по-прежнему являются лазерные технологии. Россия усилиями Нобелевских лауреатов А. М. Прохорова, Н. Г. Басова всегда была одним из мировых лидеров в этой области, надеюсь и останется в будущем

«Наследство» наших великих ученых никуда не делось, оно здесь, с нами. Высокочастотный И-П режим был разработан в соавторстве с акад. А. М. Прохоровым . Прошло 13 лет со дня его ухода, а мы так и не продвинулись в плане дальнейшего масштабирования мощности этого режима генерации. Нужны средства и внимание Государственных структур, ответственных за это направление научно-технической деятельности. Другой пример. С момента предложения акад. Н. Г. Басовым дисковой геометрии лазера прошло 52 года .

Его «дисковый лазер» представляет собой революционный шаг в развитии физико-технических основ и технологии лазеров и открывает новые перспективы их дальнейшего развития и эффективного применения для решения нового класса задач, как гражданского, так и военного применения. Патент, тем не менее, принадлежит не Н.Г.Басову, а гастролировавшему по России с острым карандашом и толстым блокнотом немцу. Прошло полвека, а государственная поддержка в развитии этой уникальной технологии по-прежнему недостаточна. Представляется также ошибочной и политика концентрации материальных ресурсов в одном, находящемся на периферии Лазерном центре. Известно, что кадры решают все, а исторически наиболее квалифицированные в области лазерных технологий кадры страны располагались в Москве и Санкт-Петербурге. В подобной ситуации они оказываются лишенными возможности участвовать в создании новых образцов лазерной техники. А создание новой плеяды инженерно-технических умельцев есть процесс длительный, да и времени на обучение нет!

Несколько более подробно для неспециалистов нужно пояснить что такое дисковый лазер. Дисковый лазер называется так потому, что в нем лазерный активный элемент выполнен в виде диска с толщиной, много меньшей его диаметра, имеющего высокоотражающее покрытие на одной из сторон этого активного элемента как для отражения лазерного излучения, так и для накачки. В этом лазере согласно акад. Н.Г.Басову нужно было решить две проблемы: охлаждение диска и подавление УСИ, т. е. подавление генерации излучения в плоскости диска. Сегодня решение этих проблем наконец-то нами найдено! Открыта перспектива создания «суперлазера» для нового класса задач .

Моно-модульный масштабируемый дисковый лазер большого диаметра может и должен быть сделан нами в ближайшее время, что позволит России вновь занять лидирующую позицию в данном весьма принципиальном вопросе лазерной физики. Моно-модульная дисковая геометрия лазера является наиболее эффективной формой реализации компактного и легкого лазера, способного при средней мощности в пределах 25 МВт быть размещенным на борту существующих летательных аппаратов. Даже уже достигнутые для т/т лазерных систем с п/п накачкой удельные параметры выраженные в кВт / кг, позволяют говорить в случае дисковой геометрии большого диаметра о возможности нового и весьма эффективного решения задач ВКО страны.

Эти новые-старые технологии - И-П режим с высокой частотой повторения импульсов (>10кГц) и моно-модульный дисковый лазер - прекрасно сочетаются в едином лазерном комплексе. В частности, нами за прошедшие годы, помимо экспериментальной демонстрации режима на уровне 10кВт и применения этого режима для резки металлов, стекла и композита, теоретически показана высокая эффективность применения высокочастотного И-П режима для решения задачи эффективного уничтожения космического мусора (КМ), для резки толстых льдов Северного ледовитого океана, для реализации лазерного двигателя, для создания проводящего канала и много для чего еще.

Высокочастотный И-П режим - это режим лазерной генерации, при котором энергия лазера выделяется в виде последовательности коротких импульсов с большой частотой. При этом пиковая мощность отдельных импульсов в сотни и тысячи раз превышает значение средней мощности обычного непрерывного режима генерации

Лидирующими специалистами в области создания мощных высокочастотных И-П лазеров и авторами патента являются сотрудники ООО «Энергомаштехника» , созданного при участии акад. А.М.Прохорова в трудные годы начала 90-х. Нами был предложен и экспериментально осуществлен лазерный двигатель на основе механизма высокочастотного оптического пульсирующего разряда и получены рекордные характеристики тяги двигателя. На основе высокочастотного И-П лазера предложен и экспериментально осуществлен проводящий канал с минимальным удельным сопротивлением, показана возможность его масштабирования до значительных масштабов и осуществимость такого высокопроводящего канала, в том числе, и в вакууме .

КАК С ПОМОЩЬЮ ЛАЗЕРА МОЖНО УНИЧТОЖАТЬ КОСМИЧЕСКИЙ МУСОР?

Все довольно просто. При воздействии последовательности мощных лазерных импульсов на объект возникают импульсы отдачи, которые вызывают перемещение объекта в пространстве. А дальше, действуя таким образом можно менять его орбиту и либо загонять в плотные слои и дать возможность самостоятельно сгореть подобно метеоритам, либо отталкивать на «долгоживущие» орбиты . В настоящее время в мире тема лазерной чистки околоземного пространства от КМ весьма активно обсуждается. Так, предлагаемая учеными из США технология чистки космоса, основанная на использовании старого поколения длинноимпульсных лазерных систем, представляется неэффективной. Сегодня в рамках важных для мировой космонавтики международных договоров можно говорить о совместном решении проблемы КМ. Такая программа подобно «Морскому старту» могла бы объединить усилия многих стран, активно работающих в мирном космосе. Мощный высокочастотный моно-модульный дисковый И-П лазер, размещенный на горе вблизи экватора, представляется наилучшим кандидатом для решения этой проблемы.

Здесь уместно отметить, что ренессанс многих лазерных технологий связан с появлением мощного высокочастотного И-П лазерного излучения. Так, например, резка металла в режиме возгонки (абляции) оказывается 7–8 раз более эффективной . А появление, связанного с высокой пиковой мощностью излучения в этом режиме, оптического пульсирующего разряда (воспроизводимого плазменного сгустка) в атмосферном воздухе ведет к широкому спектру абсолютно новых технологий.

ЧТО ЖЕ СЕГОДНЯ ДОЛЖНА ДЕЛАТЬ РОССИЯ, ЧТОБЫ НЕ ОКАЗАТЬСЯ В ОБОЗЕ МИРОВОГО «ЛАЗЕРНОГО ПРОГРЕССА»?

Очевидно, что нужно идти к главной цели - цели надежного обеспечения воздушно-космической обороны страны, но своим путем, не копируя слепо все новшества ученых и оборонного комплекса США.

Россия не один раз доказывала, что умеет «прыгать через красные флажки» и достигать уникальных результатов за счет таланта и фантастической работоспособности ученых РАН и инженерно-технического персонала предприятий ВПК. Лазеры - это далеко не игрушки! А именно обратное было заявлено у нас в стране после провального завершения работ по Стратегической оборонной инициативе. Но в США и др. развитых странах быстро опомнились и продолжили работы с удвоенным темпом. А мы, работая неэффективно, продолжаем выжидать, когда мимо нас проплывет еще один «труп» неудачно разработанного в США сверхмощного лазерного комплекса. А вот если новые модификации ЛО на основе т/т лазера с п/п накачкой, над которыми в США сейчас усиленно работают, не проплывут, а если будет, наконец, достигнута поставленная цель построения стратегического ЛО, практически мгновенно уничтожающего военную технику противника на дальности более тысячи километров. Что тогда?

ЛИТЕРАТУРА

«US News and World Report» , Oктябрь (1971).

D. Litovkin Laser weapons development in full swing in U.S. and Russia, December, (2014)

П. В. Зарубин Лазерное оружие. Миф или реальность. ООО «Транзит-Икс» (2010)

П. В. Зарубин Из истории создания в СССР высокоэнергетических лазеров и систем на их основе для оборонных задач, 1963–1980. Доклад на семинаре ИОФ РАН, Москва, (2012)

A. Patent 5 175 664 USA. Dischargе of lighting with ultrashort laser pulses. H02H 003/22.

b. Patent 5 726 855 USA. Apparatus and method for enabling the creation of multiple extended conduction paths in the atmosphere. H01H 3/22.

c. Patent 6 191 386 Bl USA. Method and apparatus for initiating, directing and constructing electrical discharge arcs. B23K 9/067.

В. В. Путин. Выступление на расширенном заседании Госсовета, Москва (2015)

V. V. Apollonov. High power P-P lasers, NOVA publishing house,(2014)

N. G. Basov , O. v. Bogdankevich, A. Z. Grasiuk IEEE J. of QE 2 (9), (1966)

V. V. Apollonov. American journal of modern physics 1 (1), (2012)

V . V. Apollonov. Conducting channel for energy delivery, Journal of Natural science v. 4, N.9, 719–723,(2012)

В. В. Аполлонов. Космическийк лининг. Борьба с космическим мусором и объектами естественного происхождения с помощью лазеров, Экспертный союз, 5, (2012)

V. V. Apollonov. High power lasers and new applications. International journal of engineering research and development, v. 11, issue 03, March (2015).

США провели в Персидском заливе испытания нового вида оружия - лазерную систему под название LaWS (Laser Weapons System). Она была установлена на десантном корабле USS Ponse. В ходе испытаний военные сбили беспилотник, сообщает телеканал CNN , журналисты которого стали свидетелями события.

Телеканал утверждает, что речь идет о "первом в мире активном лазерном оружии". В материале отмечается, что речь идет не об экспериментальном образце, а о полноценном оружии, готовом к использованию в любой момент.

В качестве цели для тестирования был выбран беспилотный самолет - оружие, которое, по выражению CNN, "все чаще используется Ираном, Северной Кореей, Китаем, Россией и другими противниками" США. После попадания по нему лазерным лучом самолет упал в море.

Видеокадры этого и других моментов испытаний телеканал опубликовал в Сети. Помимо дрона лазер также успешно уничтожил небольшие мишени, установленные на борту движущегося корабля.

Военные отмечают, что по сравнению с другими видами оружия LaWS обладает целым рядом преимуществ. Так, например, стрельба из него не требует предварительной подготовки. "Нам не надо вести цель. Надо просто прицелиться и выстрелить", - рассказал журналистам управляющий системой лейтенант ВМС США Кейл Хьюз.

По данным CNN, LaWS способна поражать объекты "со скоростью света" и является в 50 тысяч раз быстрее межконтинентальных баллистических ракет (МБР). Выстрел из установки производится беззвучно и незаметно, так как пушка действует в невидимой части электромагнитного спектра.

При этом система "невероятно эффективна". Капитан ВМС США Кристофер Уэлл отметил, что лазер действует "точнее, чем пуля". Еще один плюс - значительное снижение побочного ущерба.

При использовании лазерной пушки военным также не надо учитывать погодные условия. Для работы системе требуется лишь электричество, которое она получает из собственного генератора.

При этом нет необходимости ни в каких боеприпасах. Пушка выстреливает фотонами, которые при соприкосновении с мишенью нагревают ее до нескольких тысяч градусов, из-за чего объект разрушается.

Управлять пушкой может команда из трех человек. Ее стоимость составляет около 40 миллионов долларов, а стоимость одного выстрела равна примерно одному доллару.

По словам Уэлла, испытанная установка "является универсальной и может быть использована против различных целей". По данным CNN, ВМС США сейчас разрабатывают лазерные системы второго поколения, которые помимо воздушных целей и небольших кораблей смогут уничтожать ракеты. На вопрос о том, сможет ли LaWS сбить ракету, он ответил "может быть".

Эксперт Минобороны: лазерное оружие США не представляет угрозы для России

Испытания американцев прокомментировали в России. Так, военный эксперт, член Общественного совета при Минобороны РФ Игорь Коротченко заявил, что не видит в произошедшем угрозы для ВМФ России.

По его мнению, американская техника действительно интересна, но она имеет ряд недостатков, которые проявятся в условиях настоящего боя. В частности, пока она может успешно действовать лишь в идеальных погодных условиях. Большие волны, провоцирующие раскачивание морских военных кораблей, способны снизить ее эффективность, приводит мнение Коротченкова VladTime.ru .

Кроме того, подобные лазерные пушки зависимы от мощности энергоустановки судна, поэтому их крайне проблематично разместить на реальных боевых кораблях. "Либо мощности будут падать, либо дальность будет падать. Поэтому пока мы можем говорить, что это никоим образом для возможностей нашего ВМФ угрозы не несет", - заключил эксперт (цитата по ).

Другой военный эксперт Алексей Леонков рассказал ФБА "Экономика сегодня" , что испытания, проведенные США, - всего лишь демонстрация, рассчитанная на "непосвященную публику". Он отметил, что лазерная установка испытывалась в идеальных условиях - в безветренную и безоблачную погоду.

"Беспилотник-цель не маневрировал, а летел по заранее известной траектории. Да и был он пластиковым, что существенно облегчало уничтожение", - отмечает эксперт. Он также добавил, что "к проведенным испытаниям в принципе много вопросов - далеко не факт, что именно выстрел поджег крыло беспилотника". "Нет уверенности, что там не была установлена камера возгорания для обеспечения успеха выстрела", - считает специалист.

Он также отмечает, что "самая простая защита от лазерного оружия - распыление газов". Узконаправленный луч не может сквозь них пробиться. Естественной помехой успешному выстрелу лазерной установки, по словам Леонкова, может быть банальная облачность.

В России тоже ведутся разработки лазерного оружия

Напомним, об установке лазерного оружия на USS Ponce и его испытаниях сообщалось еще в 2014 году. Тогда отмечалось, что разработка нового вооружения заняла семь лет и обошлась Соединенным Штатам в 40 миллионов долларов. Еще 30 миллионов потребовалось для монтажа пушки на борт корабля.

Руководитель военно-морских исследований Мэттью Кландер отмечал, что речь идет о "первом в документированной истории случае боевого применения энергетического оружия направленного действия". По его словам, в ходе испытаний оружие "работало хорошо" и за время стрельбы пушки "ни разу не промахнулись"

Параллельно с США разработка лазерного оружия проводится и в России. Бывший начальник Генштаба ВС РФ генерал армии Юрий Балуевский утверждал, что разработка новых эффективных вооружений в РФ идет практически параллельно с американским военным планированием.

В августе 2016 года замминистра обороны России Юрий Борисов заявлял, что отдельные образцы лазерного оружия приняты на вооружение российской армии. Также он рассказал, что ведется работа над созданием не только лазерного, но и радиочастотного, пучкового, кинетического оружия.

В октябре того же года Борисов рассказывал, что уже завершена наземная отработка оборудования российского самолета А-60, который предполагается оснащать лазерным оружием. В январе 2017 года Борисов рассказывал, что в России полным ходом идет разработка гиперзвукового оружия с использованием "принципиально новых материалов".

Лазер - это оптический квантовый генератор, аббревиатура от Light Amplification by Stimulated Emission Radiation («усиление света в результате вынужденного излучения»). Инженерно-военная мысль еще со времен, когда А.Толстым был написан фантастический роман «Гиперболоид инженера Гарина», активно ищет возможные пути реализации идеи создания лазерного , которым можно было бы резать бронетехнику, самолеты, боевые ракеты и т. д.


В процессе исследований лазерное оружие разделилось на «прожигающее», «ослепляющее», «электро-магнитно-импульсное», «перегревающее» и «проекционное» » (на облака проектируют картины, которые способны деморализовать неподготовленного или суеверного противника).

В свое время США планировало разместить на околоземной орбите спутники-перехватчики, способные уничтожать на начальной траектории полета советские баллистические межконтинентальные ракеты. Эта программа носила название «Стратегическая оборонная инициатива» (СОИ). Именно СОИ дала толчок к активной разработке лазерного оружия в СССР.

В Советском Союзе для уничтожения американских спутников-перехватчиков были разработаны и построены несколько экспериментальных образцов лазерных космических пушек. На тот момент времени они могли работать только при наличии мощных наземных источников питания, об их установке на военном спутнике или космической платформе не могло быть и речи.

Но несмотря на это, эксперименты и испытания продолжались. Первую отработку лазерной пушки было решено провести в морских условиях. Пушку установили на танкер вспомогательного флота «Диксон». Для того чтобы получить требуемую энергию (не менее 50 мегаватт) дизели танкера были усилены тремя реактивными двигателями от Ту-154. По некоторым данным, было проведено несколько успешных испытаний по поражению целей на берегу. Затем случилась перестройка и развал СССР, все работы прекратились из-за отсутствия финансирования. А «лазерный корабль» «Диксон» при разделе флота достался Украине. Дальнейшая его судьба неизвестна.

Одновременно велись работы по созданию космического аппарата «Скиф», который мог бы нести на себе лазерную пушку и обеспечивать ее энергией. В 1987 году даже должен был состояться запуск этого аппарата, который носил название «Скиф-Д». Его создавали в рекордные сроки в НПО «Салют». Прототип космического истребителя с лазерной пушкой был построен и готов к запуску, на старте стояла ракета «Энергия» с пристыкованным сбоку 80-тонным аппаратом «Скиф-Д». Но случилось так, что именно в это время на Байконур приехал известный радетель интересов США Горбачев. Собрав за три дня до старта «Скифа» советскую космическую элиту в конференц-зале Байконура, он заявил: «Мы категорически против переноса гонки вооружений в космос и покажем в этом пример». Благодаря этой речи «Скиф-Д» был выведен на орбиту лишь для того, чтобы тут же быть брошенным на сожжение в плотные слои атмосферы.

А ведь по сути успешный запуск «Скифа» означал бы полную победу СССР в борьбе за ближний космос. Например, каждый истребитель типа «Полет» мог уничтожать всего один аппарат противника, при этом он погибал сам. «Скиф» же мог летать на орбите довольно долго, поражая при этом своей пушкой аппараты противника. Еще одним неоспоримым достоинством «Скифа» было то, что его пушке не требовалась особая дальнобойность, для уничтожения предполагаемых целей легкоуязвимых орбитальных спутников хватило бы и 20-30 км действия. А вот американцам пришлось бы ломать голову над космическими станциями, бьющими на тысячи километров по маленьким бронированным боеголовкам, несущимся на бешенной скорости. «Скифы» же сбивали спутники на догоне, когда скорость преследуемой цели по отношению к охотнику можно сказать просто улиточная.


Маневрирующий спутник "Полет-1"

Получается, что флот «Скифов» разносил бы в щепки американскую низкоорбитальную группировку военных спутников с стопроцентной гарантией. Но все это не состоялось, хотя оставшаяся научно-техническая база является отличной основой для современных разработчиков.

Следующей разработкой КБ «Салют» должен был стать аппарат «Скиф-Стилет». Приставка «Стилет» появилась в названии потому, что на нем собирались установить разработанный в НПО «Астрофизика» бортовой специальный комплекс (БСК) 1К11 «Стилет». Он представлял собой модификацию «десятиствольной» наземной установки инфракрасных лазеров с одноименным названием, работающих на длине волны 1.06 нм. Наземный «Стилет» предназначался для вывода из строя прицелов и датчиков оптических устройств. В условиях космического вакуума радиус действия лучей можно было значительно увеличить. «Космический стилет» в принципе успешно можно было применять как противоспутниковое средство. Как известно, вывод из строя оптических датчиков космического аппарата равносилен его гибели. Что стало с этим проектом - неизвестно.

Не так давно в беседе с журналистами начальник Генштаба Вооруженных сил РФ Николай Макаров заявил о том, что в России, «как и во всем мире, ведутся работы по боевому лазеру». Добавив при этом: «Говорить о его характеристиках пока преждевременно». Может быть он говорил о развитии именно этого проекта.

По данным «Википедии», судьба наземного «Стилета» также очень печальна. По некоторым данным, ни один из двух принятых на вооружение экземпляров в настоящий момент не действует, хотя формально «Стилет» до сих пор состоит на вооружении Российской армии.


Лазерный комплекс «Стилет» на государственных испытаниях







Фотографии одного из комплексов «Стилет», 2010 год, Харьковский танковый ремонтный завод №171

Некоторые эксперты считают, что во время парада 9 мая 2005 года Россия продемонстрировала лазерные пушки, причем не «прототипы», а серийные машины. Шесть боевых машин со снятыми «боевыми блоками» и «оконечными устройства» стояли по обе стороны Красной площади. По мнению экспертов, это и были те самые «лазерные пушки», тут же окрещенные остряками «гиперболоидом Путина».

Кроме этой амбициозной демонстрации и публикаций о «Стилете», каких-либо более подробных данных о российском лазерном оружии в открытой печати нет.

Электронный справочник министерства обороны РФ «Оружие России» сообщает: «Перспективы создания боевого лазерного оружия в России эксперты в этой области, несмотря на противоречивые и недоказанные данные в связи с закрытостью этой темы, оценивают, как реалистичные. Это обусловлено, в первую очередь, бурным развитием современных технологий, расширением области использования лазерных средств для других целей, стремлением создать такое оружие и теми преимуществами, которыми оно обладает в сравнении с традиционными средствами поражения. По некоторым оценкам реальное появление боевого лазерного оружия возможно в период 2015-2020 годы».

Возникает резонный вопрос: как же обстоят дела по этому вопросу у нашего потенциального заокеанского противника США?
Например, генерал-полковник Леонид Ивашов, президент Академии геополитических проблем, дает на этот вопрос такой ответ:

Для нас опасность представляют мощные химические лазеры, размещаемые на самолетах «Боинг-747» и космических платформах. Кстати, это лазеры советских разработок, переданные в начале 90-х годов по распоряжению Б. Ельцина американцам!

И действительно, не так давно в американской прессе появилось официальное заявление Пентагона о том, что испытания боевой лазерной установки для борьбы с баллистическими ракетами, предназначенной для размещения на авиационных носителях, прошли успешно. Также стало известно, что Агентство по противоракетной обороне США получило у конгресса финансирование программы испытаний на 2011 год в размере одного миллиарда долларов.

По замыслам американских военных, самолеты, оснащенные лазерными комплексами, будут действовать в основном против ракет средней дальности, хотя более вероятно, что лишь против оперативно-тактических. Поражающее действие данного лазера даже при идеальных условиях ограничено 320-350 км. Получается, чтобы сбить баллистическую ракету на стадии разгона, самолет с лазером должен находиться в радиусе 100-200 км. от расположения ракетных установок. Но позиционные районы межконтинентальных баллистических ракет расположены, как правило, в глубине территории страны, и, если самолет ненароком там окажется, то не возникает никаких сомнений, что он будет уничтожен. Поэтому принятие США на вооружение лазера воздушного базирования позволит им лишь воспрепятствовать угрозам от стран, освоивших ракетные технологии, но не имеющих полноценной противовоздушной обороны.

Конечно, со временем Пентагон может вывести лазеры и в космос. И Россия должна быть готова к ответным мерам.

Привычный для нас термин «лазер» является аббревиатурой от Light Amplification by Stimulated Emission of Radiation, что в переводе означает «усиление света посредством вынужденного излучения».

Впервые о лазере всерьез заговорили во второй половине XX века. Первое действующее лазерное устройство американский физик Теодор Мейман представил в 1960 году, а в наши дни лазеры используются в самых различных сферах. Довольно давно они нашли применение и в военной технике, хотя вплоть до последнего времени речь шла преимущественно о нелетальном вооружении, способном временно ослепить противника или вывести из строя его оптику. Полноценные боевые лазерные комплексы, способные уничтожать технику, пока находятся на стадии разработки, и когда именно они встанут в строй, сказать пока сложно.

Основные проблемы связаны с большой стоимостью и высокой энергозатратностью лазерных комплексов, а также их способностью наносить реальный урон высокозащищенной технике. Тем не менее, с каждым годом ведущие страны мира все активнее разрабатывают боевые лазеры, постепенно увеличивая мощность своих прототипов. Разработку лазерного оружия правильнее всего было бы назвать инвестициями в будущее, когда новые технологии позволят всерьез говорить о целесообразности таких систем.

Крылатый лазер

Одним из самых нашумевших проектов лазерных боевых систем стал экспериментальный Boeing YAL-1. В роли платформы для размещения боевого лазера выступил модифицированный авиалайнер Boeing 747-400F.

Американцы всегда искали способы защитить свою территорию от неприятельских ракет, и проект YAL-1 создавался именно для этой цели. В его основе лежит химический кислородный лазер мощностью 1 МВт. Главное преимущество YAL-1 перед другими средствами противоракетной обороны — это то, что лазерный комплекс теоретически способен уничтожать ракеты на начальном этапе полета. Американские военные не единожды заявляли об успешных испытаниях лазерной установки. Тем не менее, реальная эффективность такого комплекса видится довольно сомнительной, и программа, обошедшаяся в 5 млрд долларов, была свернута в 2011 году. Впрочем, полученные в ней наработки нашли применение в других проектах боевых лазеров.

Щит Моисея и клинок Дядюшки Сэма

Израиль и США — мировые лидеры в области разработки боевых лазерных комплексов. В случае с Израилем создание таких систем обусловлено необходимостью противостоять частым ракетным обстрелам территории страны. В самом деле, если уверенно поражать цели типа баллистической ракеты лазер сможет еще нескоро, то бороться с ракетами малой дальности ему вполне под силу уже сейчас.

Палестинские неуправляемые ракетные снаряды «Кассам»» — источник постоянной головной боли для израильтян, и дополнительной гарантией безопасности должна была стать американо-израильская лазерная система ПРО Nautilus. Основную роль в разработке самого лазера сыграли специалисты американской компании Northrop Grumman. И хотя израильтяне вложили в Nautilus более 400 млн долларов, в 2001 году они вышли из проекта. Официально результаты испытаний ПРО были положительными, но военное руководство Израиля отнеслось к ним скептически, и в итоге американцы остались единственными участниками проекта. Разработка комплекса была продолжена, но до серийного производства дело так и не дошло. Зато опыт, накопленный в процессе испытаний Nautilus, был использован для разработки лазерного комплекса Skyguard.

Системы противоракетной обороны Skyguard и Nautilus построены вокруг высокоэнергетического тактического лазера — THEL (Tactical High Energy Laser). Согласно заявлениям разработчиков, THEL способен эффективно поражать реактивные снаряды, крылатые ракеты, баллистические ракеты малой дальности и беспилотники. При этом THEL может стать не только эффективной, но и весьма экономичной системой ПРО: один выстрел будет стоить всего около 3 тыс. долларов, намного дешевле пуска современной противоракеты. С другой стороны, говорить о реальной экономичности подобных систем можно будет лишь после их принятия на вооружение.

THEL — это химический лазер мощностью около 1 МВт. После обнаружения цели радаром компьютер ориентирует лазерную установку и производит выстрел. В доли секунды лазерный луч заставляет детонировать вражеские ракеты и снаряды. Критики проекта предрекают, что такого результата можно достичь лишь в идеальных погодных условиях. Возможно, именно поэтому ранее вышедшие из проекта Nautilus израильтяне не заинтересовались комплексом Skyguard. Но американские военные называют лазерную установку революцией в области вооружений. По словам разработчиков, серийное производство комплекса может начаться совсем скоро.

Лазер в море

Большой интерес к лазерным системам ПРО проявляет военно-морское ведомство США. По замыслу, лазерные комплексы смогут дополнить привычные средства защиты боевых кораблей, взяв на себя роль современных скорострельных зенитных орудий, таких, как Mark 15. Разработка подобных систем сопряжена с рядом трудностей. Мелкие капли воды во влажном морском воздухе заметно ослабляют энергию лазерного луча, однако эту проблему разработчики обещают решить за счет увеличения мощности лазера.

Одна из последних разработок в этой области — MLD (Maritime Laser Demonstrator). Лазерная установка MLD — всего лишь демонстратор, но в будущем ее концепция может лечь в основу полноценных боевых систем. Комплекс разработан компанией Northrop Grumman. Первоначально мощность установки была небольшой и составила 15 КВт, однако и ей во время испытаний удалось уничтожить надводную мишень — резиновую лодку. Конечно, в будущем специалисты Northrop Grumman намерены увеличить мощность лазера.

На авиасалоне «Фарнборо — 2010» американская компания Raytheon представила на суд общественности собственный концепт боевого лазера LaWS (Laser Weapon System). Эта лазерная установка объединена в единый комплекс с корабельной зенитной пушкой Mark 15 и на испытаниях сумела поразить беспилотник на дистанции около 3 км. Мощность лазерной установки LaWS составляет 50 КВт, чего достаточно, чтобы прожечь 40-миллиметровую стальную пластину.

В 2011 году компании Boeing и ВАЕ Systems начали разработку комплекса TLS (Tactical Laser System), в котором лазерная установка также совмещается со скорострельным 25-миллиметровым артиллерийским орудием. Считается, что эта система сможет эффективно поражать крылатые ракеты, самолеты, вертолеты и небольшие надводные цели на дальности до 3 км. Скорострельность Tactical Laser System должна составить около 180 импульсов в минуту.

Мобильный лазерный комплекс

Другая разработка компании Boeing — HEL-MD (High Energy Laser Mobile Demonstrator) — должна устанавливаться на мобильную платформу — восьмиколесный грузовик. На испытаниях, которые прошли в 2013 году, комплекс HEL-MD успешно поразил учебные мишени. Потенциальными целями для подобной лазерной установки могут стать не только беспилотники, но и артиллерийские снаряды. В скором времени мощность HEL-MD будет доведена до 50 КВт, а в обозримом будущем составит 100 КВт.

Еще один образец мобильного лазера недавно представила немецкая компания Rheinmetall. Лазерный комплекс HEL (High-Energy Laser) установили на бронетранспортер Boxer. Комплекс способен обнаруживать, сопровождать и уничтожать цели — как в воздухе, так и на земле. Мощности достаточно для уничтожения беспилотников и ракет малой дальности.

Перспективы

Известный эксперт в области перспективных вооружений Андрей Шалыгин рассказывает: — Лазерное оружие является оружием буквально прямой видимости. Цель нужно обнаружить на прямой линии, навести на нее лазер и устойчиво сопровождать, чтобы успеть передать количество энергии, достаточное для повреждения. Соответственно, загоризонтное поражение невозможно, устойчивое гарантированное поражение на больших дистанциях — тоже невозможно. Для больших дистанций установка должна быть поднята как можно выше. Поражение маневрирующих целей затруднено, поражение экранированных целей затруднено… В цифрах все это выглядит слишком банально, чтобы вообще об этом говорить всерьез, по сравнению даже с примитивными действующими системами ПВО.

Кроме этого существуют два фактора, которые еще более усложняют ситуацию. Энерговооруженность носителя такого оружия в сегодняшних условиях должна быть огромна. Это делает всю систему либо чрезвычайно громоздкой, либо чрезвычайно дорогой, либо имеющей массу других недостатков вроде малого суммарного времени нахождения в боевой готовности, большого времени приведения в боевую готовность, огромной стоимости выстрела и так далее. Вторым существенным фактором,ограничивающим действие лазерного оружия, является оптическая неоднородность среды. В примитивном понимании — любая заурядная непогода с осадками делает применение такого оружия ниже уровня облачности совершенно бесполезным занятием, а защита от него в нижних слоях атмосферы представляется весьма простой.

Поэтому пока не приходится говорить о том, что образцы любого ноу-хау в лазерном оружии в обозримом будущем смогут стать чем-то большим, нежели не самое лучшее оружие ближнего боя для корабельных группировок в хорошую погоду и для авиационных дуэлей, проходящих выше уровня облачности. Как правило, экзотические системы вооружения являются одним из самых эффективных способов «сравнительно честного» зарабатывания денег лоббистами. Поэтому в целях решения тактических задач боевыми единицами в рамках военного искусства можно легко найти десяток-другой гораздо более эффективных, дешевых и простых решений поставленных задач.

Разрабатываемые американцами системы авиационного базирования могут найти весьма ограниченное применение для локальной защиты от средств воздушного нападения выше уровня облачности. Однако стоимость таких решений значительно превышает существующие системы без всяких перспектив ее снижения, а боевые возможности существенно ниже.

С открытием материалов для конструирования сверхпроводящих систем, работающих при температурах, близких к окружающей среде, а также в случае создания компактных мобильных высокоэнергетических источников мощности, лазерные установки будут производиться и в России. Они могут пригодиться для целей ближней ПВО во флоте и применяться на надводных кораблях, для начала — в составе систем на основе таких платформ, как ЗК Пальма или АК-130-176.

В сухопутных войсках такие системы в полностью боеспособном виде известны всему миру еще со времен, когда Чубайс пытался открыто продавать их за границу. Они даже выставлялись с этой целью в рамках МАКС-2003. Например, МЛТК-50 — конверсионная разработка в интересах Газпрома, которая велась Троицким институтом инновационных и термоядерных исследований (ТРИНИТИ) и НИИЭФА имени Ефремова. Его появление на рынке, собственно, и привело к тому, что весь мир сразу внезапно продвинулся вперед в конструировании аналогичных систем. При этом в настоящее время энергетика систем позволяет иметь не сдвоенный, а обычный одиночный автомобильный модуль.

Похоже, что лазерные комплексы — это оружие не завтрашнего и даже не послезавтрашнего дня. Многие критики считают, что разработка лазерных систем — и вовсе пустая трата денег и времени, а крупные оборонные корпорации с помощью таких проектов просто осваивают новые средства. Впрочем, подобная точка зрения справедлива лишь отчасти. Возможно, боевой лазер еще нескоро станет полноценным оружием, но окончательно ставить на нем крест было бы преждевременно.

2610


Наша первая подборка материалов под рубрикой «Оружие будущего», посвященная боевым роботам, вызвала немалый интерес у читателей, о чем свидетельствуют письма в редакцию. В них они просят продолжить публикации о современных и разрабатываемых за рубежом видах вооружений. Выполняя эту просьбу, мы посвящаем очередную подборку боевым лазерам. Напомним, что в опубликованном журналом New Scientist рейтинге наиболее многообещающих систем оружия они занимают второе место.

«Лучи смерти» Архимеда

«Когда Марцелл убрал корабли на расстояние, превышающее полет стрелы, старик соорудил особое шестиугольное зеркало; на расстоянии, пропорциональном размеру зеркала, он расположил похожие четырехугольные зеркала, которые можно было перемещать с помощью специальных рычагов и шарниров. Зеркало он обратил к полуденному солнцу - зимнему или летнему - и, когда пучки лучей отразились в нем, огромное пламя вспыхнуло на кораблях и с расстояния полета стрелы превратило их в пепел».
Это по сути первое упоминание о «лучах смерти», которые следует, наверное, считать прообразом лазерного оружия. Они, согласно дошедшим до нас легендам, были изобретены Архимедом в III веке до нашей эры и применены при обороне Сиракуз от осаждавших город римских войск. Кстати, на рис. 1 показано, как итальянский художник Джулио Париджи (1571 – 1635) представлял действие этого оптического оружия. На протяжении последующих двух тысячелетий шли споры о возможности превращения света в оружие, спорадически провоцируемые писателями-фантастами. Наиболее известными из них стали романы «Война миров» Герберта Уэллса и «Гиперболоид инженера Гарина» Алексея Толстого. В первом напавшие на Землю пришельцы были оснащены оружием, в котором в качестве поражающего фактора служили неизвестно каким образом создаваемые тепловые лучи. Во втором автор даже описал конструкцию и принцип действия своего оружия. В качестве источника энергии в гиперболоиде использовались некие термитные свечи, а система зеркал фокусировала тепловой луч. В результате получался «…узкий, как игла, луч, срезающий трубы огромных заводов, режущий, как раскаленный нож, броню линкоров...».
На практике же никак не удавалось создать устойчивый луч при помощи традиционных источников и систем. Лишь изобретение в 1954–1955 годы советскими учеными Николаем Басовым и Александром Прохоровым одновременно с американцем Чарльзом Таунсом оптического квантового генератора сдвинуло процесс с мертвой точки. В результате был получен первый лазер (LASER - «Light Amplification by Stimulated Emission of Radiation», что означает «усиление света в результате вынужденного излучения»). По формулировке Николая Басова, «лазер – это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля – лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметром порядка длины световой волны и получить плотность энергии, превышающую уже на сегодняшний день плотность энергии ядерного взрыва».
Ныне уже существует множество конструкций лазеров. С некоторыми из них мы часто встречаемся в повседневной жизни. Например, с полупроводниковыми (лазерная указка и считывающая головка в CD- и DVD-проигрывателях), газовыми (школьный гелий-неоновый и технологический на углекислом газе, который режет металл) и другими. В военной же сфере успехи не столь разительны, хотя, учитывая свойства лазеров, нетрудно предположить, что у боевых лазерных систем большое будущее. Во-первых, лазерный луч достигает цели со скоростью света - 300 тыс. км в секунду. Во-вторых, лазерное оружие не зависит от земного притяжения: как известно, пули и снаряды летят по параболе, обусловленной гравитацией. В-третьих, лазерное оружие обладает невероятной точностью. К примеру, пройдя расстояние до Луны (380 тыс. км), диаметр луча разойдется всего на 1,5 километра. В-четвертых, лазерное оружие может полностью уничтожать атакуемые объекты или только повреждать их.
Поражающее действие лазерного луча достигается в результате нагревания до высоких температур материалов цели, что приводит к разрушению объекта, повреждению чувствительных элементов вооружения, ослеплению органов зрения человека, вплоть до необратимых последствий, нанесению ему термических ожогов кожи. Для противника действие лазерного излучения отличается внезапностью, скрытностью, отсутствием внешних признаков, высокой точностью, практически мгновенным действием. Правда, есть и серьезные проблемы боевого применения лазеров. Это прежде всего необходимость подключения лазерной пушки к мощному источнику электроэнергии. Для проведения одного «выстрела» требуется не менее 100 кВт. Эффективность лазерного оружия снижают туман, дождь, снегопад, задымленность и запыленность атмосферы.
Твердотельные, химические, жидкостные…
Как считается, создание лазерного оружия можно сравнить с рождением ядерной бомбы. И та страна, которая решит эту сложнейшую научно-техническую проблему первой, получит возможность диктовать свои условия мировому сообществу. Поэтому работы в этой области особо не афишируются. Тем не менее в средствах массовой информации достаточно сообщений, которые свидетельствуют, что в целом ряде государств, обладающих соответствующими технологиями, и особенно в США, ведутся интенсивные работы по созданию лазерного оружия. При этом основные усилия сосредоточены на твердотельных, химических, рентгеновских лазерах с ядерной накачкой, со свободными электронами и некоторых других.
Твердотельный лазер, для них в качестве активного вещества используют рубины или некоторые другие кристаллы, рассматривается специалистами США в качестве одного из перспективных типов генераторов для боевых систем. При этом, однако, указывается, что твердотельные лазеры требуют слишком много энергии для накачки и охлаждения, чтобы быть использованными на поле боя. В этом плане более привлекательными выглядят жидкостные лазеры. В качестве активного вещества они используют редкоземельные элементы, которые растворяют в некоторых жидкостях. Жидкостью можно заполнять любой объем. Это облегчает охлаждение активного вещества путем циркуляции самой жидкости в приборе. Вместе с тем мощности таких лазеров невелики.
Агентство по оборонным разработкам министерства обороны США решило объединить технологии жидкостного и твердотельного лазеров. Лазеры с жидким активным веществом способны испускать непрерывный луч, не требуя больших систем охлаждения, в то время как лазеры на основе кристаллов обладают большей мощностью, но во избежание перегрева луч пульсирует. «Мы объединили высокую «энергетическую плотность» твердотельного лазера с «термоустойчивостью» жидкого лазера», - заявил руководитель проекта Дон Вудбери. Таким образом получается непрерывный лазерный луч значительной мощности, не требующий больших систем охлаждения. В Пентагоне рассчитывают, что благодаря этому объединению ученые создадут компактный боевой лазер мощностью 150 киловатт уже в 2007 году.
Еще больший поток энергии в луче удалось достичь при помощи химического лазера, для получения которого используется реакция соединения водорода с фтором. Всего из одного грамма реагентов при этой реакции выделяется около 500 Дж энергии. Если заменить обычный водород на дейтерий, то спектр полученного луча окажется в «окне прозрачности» атмосферы и такую «пушку» можно будет применять даже для поражения укрепленных наземных объектов. Однако эксплуатировать боевую систему, работающую на такой гремучей смеси (фтор реагирует даже со стеклом, а выделяемый фтороводород является одной из сильнейших кислот), непросто. Кроме того, химические лазеры требуют, чтобы рядом находился целый склад химических веществ, используемых в качестве топлива.
В 2003 году специалисты управления научных исследований ВМС США и национальной лаборатории ускорителей имени Томаса Джефферсона разработали лазер на свободных электронах FEL (free-electron laser). Для его получения пучок высокоэнергетических электронов пропускают через специальное устройство («магнитную гребенку»), которое заставляет их совершать синусоидальные колебания с заданной частотой. Меняя параметры «магнитной гребенки», можно на выходе получать излучение с разной длиной волны. Коэффициент полезного действия у такого лазера значительно больше, чем у других типов, - порядка 20 процентов. Как показывают эксперименты, это устройство умеет «настраиваться» на излучение электромагнитных волн инфракрасного, оптического диапазонов, а также волн сверхвысокой частоты. К тому же у него есть еще одно свойство, которого нет ни у одного подобного устройства в мире: он может излучать предельно короткие световые импульсы продолжительностью менее одной триллионной секунды. «FEL превзошел все наши ожидания», - заявил представитель управления научных исследований ВМС США Гил Граф. По его словам, морское командование рассматривает возможное применение лазерной установки, в первую очередь для создания активной боезащиты надводных кораблей.
В последние годы интенсивные работы идут по созданию боевых систем на основе рентгеновских лазеров. Их воздействие на объект отличается от уже рассмотренных лазеров, поражающих цели лучами за счет теплового воздействия. При применении рентгеновского лазера цель оказывается под ударным импульсивным воздействием, приводящим к испарению материала ее поверхности. Такие лазеры отличаются большой энергией рентгеновского излучения (в 100 – 10.000 тыс. раз выше, чем у других лазеров) и способностью проникать сквозь значительные толщи различных материалов.
В поиске новых источников энергии, которые были бы не менее мощными, чем ядерные, обладали точностью лазерного оружия и легко управлялись в широком диапазоне значений энергии, ученые пришли к технологии искусственного распада протона. При нем освобождается почти в сотню раз больше энергии, чем даже при термоядерном взрыве. В отличие от реакции ядерного деления протонные распады не требуют каких-либо критических значений масс или фиксированных значений других параметров. Важна лишь определенная их комбинация. Это позволяет создать генераторы любой мощности и использовать их различные модификации для широкого спектра видов оружия. От индивидуального излучателя до стратегических планетарных комплексов, энергетических установок и транспортных систем.
С космоса и по космосу
Если говорить о конкретных боевых лазерных системах, то, например, в США приоритетным направлением в их создании стала разработка лазерных комплексов в интересах противовоздушной, противоракетной и противокосмической обороны. При этом предусматривается создание таких систем, которые можно было бы применять на тактическом, оперативно-тактическом и глобально-стратегическом уровнях.
Первый действующий прототип боевого лазера (тактический высокоэнергетический лазер - Tactical High-Energy Laser - THEL) был создан американо-израильской исследовательской группой и прошел успешные испытания в 2000 году на полигоне Уайт-Сэндз в Нью-Мексико. В ходе испытания THEL (фото 1) смог уничтожить несколько десятков ракет, запущенных с расстояния примерно 10 км. Он одновременно вел 15 целей и потратил на уничтожение каждой из них не более 5 секунд. При этом, однако, THEL мог без перезарядки произвести всего пару выстрелов по 3 тыс. долларов каждый. Три основных компонента этой системы - химический дейтерий-фторный лазер, оптическая система управления лазерным лучом и пункт боевого управления и связи - были разработаны отдельно, не интегрированы в единый комплекс. В результате получилась подвижная боевая система размером в 6 огромных туристических автобусов, что представляет собой слишком лакомую цель для противника. Предполагается, что после доработки и совершенствования системы, создания ее в мобильном варианте она сможет решать задачи ПВО (ПРО) на тактическом уровне и защищать войска США и союзников от ракет «земля - земля» и крылатых ракет.
Тем временем на базе THEL корпорация «Нортроп – Грамман» разработала лазерный комплекс Skyguard. Он превосходит своего предшественника по мощности и дальности действия и, по словам разработчиков, может использоваться для защиты важных военных и гражданских объектов, а также расположения войск от обстрела баллистическими ракетами малой дальности, снарядами реактивных систем залпового огня (типа «Град» или MRLS), артиллерийскими снарядами и минометными минами. Одиночный комплекс Skyguard может прикрыть территорию до 10 километров в диаметре.
Для второго уровня - оперативно-тактического - разрабатывается боевая лазерная система воздушного базирования ABL (Airborne Laser). Натурные испытания по программе авиационного лазера начнутся в 2008 году. Самолет «Боинг-747» (рис. 2) с мощным химическим лазером, установленным в носовой части лайнера, начнет пробные стрельбы по ракетам-мишеням. Исследования ведутся под руководством агентства противоракетной обороны США. Разработчики рассчитывают, что лазерная установка будет использоваться для уничтожения баллистических ракет во время старта, когда они наиболее уязвимы, а также на траектории на дальностях от 300 до 500 км. Для этого самолет с бортовым лазером будет барражировать вблизи от предполагаемого района пуска ракет. Инфракрасные датчики обнаружат ракетный пуск и дадут сигнал на компьютер, который повернет башенку с лазером в нужную сторону. Сначала должны сработать два небольших твердотельных лазера, один из которых будет служить для целеуказания, а второй - рассчитывать оптическое искажение с учетом атмосферных изменений. Затем основной лазер поразит ракету.
Бюджет программы ABL в 2006 году составил 471,6 млн. долларов. На эти деньги предполагалось провести испытания систем корректировки и устойчивости целеуказания лазера, а также наземные испытания с тем, чтобы подготовить стрельбы в воздухе. И в конце октября корпорация «Боинг» представила заказчикам из Пентагона модифицированный самолет «Боинг-747-400F», вооруженный высокоэнергетической лазерной установкой, способной уничтожать баллистические ракеты сразу после их запуска. Как сообщает Рейтер, наземные испытания системы прошли успешно, и в 2008 году запланирован первый учебно-боевой перехват баллистической ракеты в воздухе. А ориентировочно к 2012 - 2015 годам ВВС США планируют иметь в составе сил ПВО (ПРО) на ТВД до 7-8 самолетов с системой ABL. Считается, что она может быть также использована для уничтожения других стратегических и тактических целей.
Третий уровень - глобально-стратегический - космическая лазерная система (программа SBL). Ее разработка идет по нескольким направлениям. Еще в 1997 году в США был проведен эксперимент по облучению лазером экспериментального спутника ВВС MSTI-3, находящегося на высоте 420 км. Испытания показали, что энергии небольшого химического лазера мощностью 30 Вт, который использовался для наведения мощной лазерной установки MIRACL, вполне достаточно для ослепления оптической аппаратуры спутников съемки Земли.
Сегодня же специалисты компании «Боинг» и ВВС ведут работы по проекту ARMS (Aerospace Relay Mirror System - воздушно-космическая релейная зеркальная система). Согласно ему новое оружие будет представлять сверхмощные стационарные лазеры наземного или морского базирования и систему зеркал, расположенную на дирижаблях и беспилотных самолетах, а в перспективе и на космических спутниках. Это позволит ему наносить удар по любым целям на земле и околоземном пространстве практически мгновенно. Принимающее зеркало будет собирать свет и затем перенаправлять его через специальную фокусирующую систему, которая определяет помехи, возникшие в атмосфере, и корректирует сигнал. После корректировки второе зеркало посылает луч на заданную цель. Лазерная установка при этом должна иметь мощность 1001000 кВт.
Проведенные в этом году испытания на базе ВВС США Киртленд в штате Нью-Мексико подтвердили боеспособность новой системы. В их ходе были использованы лазер мощностью 1 кВт и отражающая система, расположенная на расстоянии 3 км. Система состояла из двух зеркал шириной 75 см, находящихся близко друг к другу. Они были подвешены на высоте 30 м с помощью крана. Лазерный луч успешно был перенаправлен и попал в цель.
Судя по сообщениям, в Пентагоне рассматривается также проект создания сети спутников (космических платформ), оснащенных лазерными «орудиями» (рис. 3). Его разработчики утверждают, что эти «орудия» смогут уничтожать широкую гамму целей на всей земной поверхности и в околоземном пространстве. Существуют и другие проекты, что позволяет сделать вывод, что в США пока нет единого плана по созданию боевых лазерных систем глобально-стратегического уровня. Тем не менее Пентагон намерен провести натуральные испытания таких лазеров начиная с 2012 года, а прием их на вооружение планируется на 2020 год.
В боевых порядках пехоты
Ну а что же на поле боя? Будут ли противоборствующие стороны поражать друг друга «лучами смерти» в наземных операциях? «Безусловно, - заявил по этому поводу специалист Пентагона в области лазерного оружия Шелдон Мет. - Да, сегодня химические лазеры высокой мощности нуждаются в поддержке чуть ли не целого химзавода, а твердотельные требуют слишком много энергии для накачки и охлаждения, чтобы быть использованными на поле боя. Но в перспективе боевой лазер появится в возимом варианте - для установки на бронетранспортере - и даже в носимом варианте - в заплечном мешке». Шелдон Мет не называет сроки. Однако его коллега Дон Вудбери уверен, что это произойдет уже через два года, когда будет создан первый боевой лазер для использования в наземных операциях. Весить он должен не более 750 кг, а по размерам соответствовать крупному холодильнику. Это позволит устанавливать его на бронетранспортер. А в последующем габариты этого лазера будут только уменьшаться.
«Поле боя поменяется, - говорит сотрудник лаборатории Ливермора Томас Макгранн, занимающийся симуляцией боевых действий с применением лазеров. – Когда сегодня враг чем-то стреляет в меня, я это сбиваю. С любого расстояния от одного до трех километров я смогу подавить огонь. Когда он отправляет свои беспилотные летательные аппараты, в которые очень трудно попасть, я сбиваю и их. Пехотинец говорит, что его обстреливают с поросшего лесом склона холма. Тогда мы просто устраиваем там пожар. Но лазерный луч засечь практически невозможно, а главное – он позволяет нанести мгновенный удар с почти 100-процентной гарантией поражения цели». Лазерный луч можно использовать для выведения из строя электроники в боевой технике или взрывного устройства, а также личного состава противника. Например, для парализации произвольно сокращающихся мышц рук и ног. При этом мышцы сердца и легких, работающие на другой частоте, продолжают нормально функционировать.
Конечно же, ожидать, что солдаты будут бегать с лазерами наперевес, как это происходит в фантастических фильмах, не приходится. «Скорее всего, это будет исключительно дальнобойная, сверхточная снайперская винтовка, - полагает американский специалист по вооружениям Джон Пайк. – С ее помощью из-за укрытия и можно будет добиться желаемого результата». Но ее появление на вооружении – далекая перспектива. В ближайшее же время в американские войска в Ираке и Афганистане поступит лазерное устройство, которое сможет временно ослеплять водителей, игнорирующих предупреждения на пропускных пунктах. По мнению представителей Пентагона, это должно снизить количество потерь среди местных жителей, которые не обращали внимания на предупреждающие сигналы и попадали под огонь американских солдат. Для этого на карабинах M-4 будет помещено трубообразное устройство длиной 27 мм, способное выдавать луч лазера. Он будет временно ослеплять водителей, не приводя их к полной потери зрения. Не исключено, что в последующем это устройство в зависимости от мощности будет применяться и против механика-водителя вражеской бронетехники, снайпера, пилота низколетящего штурмового вертолета. А чтобы не поразить своего, фирма «Моторола» создает устройство CIDDS. Оно позволяет отличать в боевых условиях своих от чужих на расстоянии 1 км. Одна часть CIDDS крепится на шлеме, вторая - на винтовке. Когда лазерный луч, генерируемый вторым блоком, контактирует с модулем CIDDS на шлеме другого солдата, этот модуль посылает шифрованный радиосигнал о том, кто обнаружен, – свой или чужой. Процесс опознания занимает около 1 сек.
В боевых порядках американских войск могут скоро появиться и боевые лазеры, установленные на тягачах, бронетранспортерах и самолетах. Так, в октябре нынешнего года компания «Боинг» приступила к испытаниям так называемого передового тактического лазера (Advanced Tactical Laser – ATL). Этот высокоактивный химический лазер, установленный на самолете C-130H, сможет, как полагают его разработчики, уничтожать или наносить ущерб целям в городских районах практически без сопутствующего урона. Дальность действия ATL, как ожидается, будет составлять более 20 километров. Разрабатывается вариант этого лазера и для его установки на «Хаммерах».
Корпорация «Дженерал дайнэмикс» будет производить для армии США дистанционно управляемую машину разминирования Thor (фото 2), оснащенную лазерной установкой. Дистанционно управляемая гусеничная машина разработана израильской компанией «Рафаэль». Thor вооружен крупнокалиберным пулеметом M2HB и лазерной установкой, предназначенной для уничтожения неразорвавшихся боеприпасов и самодельных взрывных устройств. Лазерная установка позволяет уничтожать неразорвавшиеся снаряды, мины и взрывные устройства без детонации, вызывая выгорание взрывчатого вещества. Пулемет позволяет уничтожать снаряды и взрывчатые устройства в массивных корпусах, не поддающихся воздействию лазера. Thor оснащен оптико-электронной системой, позволяющей обнаруживать снаряды и мины независимо от погоды и времени суток. Характеристики машины позволяют использовать ее для сопровождения конвоев, прорыва укрепленных оборонительных позиций, расчистки местности. Бронирование машины позволяет выдерживать огонь стрелкового оружия и малокалиберной зенитной артиллерии.
Нет необходимости особо подчеркивать, что эффективность применения оружия во многом определяют правильное целеуказание и прицеливание. И здесь лазерные устройства получили самое широкое распространение. Это прежде всего использование в стрелковом оружии прицелов с так называемой «светящейся прицельной точкой». Суть действия состоит в том, что точка прицеливания указывается лучом света, формируемого посторонним источником, который связан с механизмом прицела и может учитывать поправки по направлению и дальности. Причем в самых совершенных моделях расчет поправок проводят электронные баллистические вычислители с датчиками температуры, давления и других параметров. Есть еще лазерные осветители, указатели и дальномеры. Первые представляют собой мощные точечные источники света часто, закрепляемые на оружии и имеющие дальность действия до 300 метров. Лазерные дальномеры только сейчас приходят в ручное стрелковое оружие, хотя на тяжелом вооружении они появились несколько лет назад.
Наконец, целеуказатели. Их можно монтировать отдельно от прицелов либо в комбинации с ними и с их помощью выбирать точку прицеливания непосредственно на цели. Есть и комплексные лазерные целеуказатели. Такие как AN/PEQ-1B. Они вскоре поступят на вооружение подразделений спецназначения ВМС США и корпуса морской пехоты, отвечающих за целеуказание для самолетов морской авиации. Аппарат отличается небольшим весом - 5,5 килограмма и компактными размерами (26х30х13 сантиметров). Целеуказатель может работать как в ручном, так и в автоматическом режиме, подсвечивая цели в секторе 45 градусов. Аппарат измеряет расстояние до целей в диапазоне от 200 до 10.000 метров с точностью плюс-минус пять метров. Разрешающая способность приемника отраженного луча составляет 50 метров. В режиме подсветки цели аппарат создает лазерное «пятно» небольшого размера (на расстоянии пять километров - 2,3х2,3 метра), обеспечивая возможность точечного поражения малоразмерных и высокозащищенных целей.
Здесь речь шла прежде всего о создании лазерного оружия в США. Но и другие страны наращивают усилия в этой сфере. Среди тех, кто уже добился определенных успехов в создании таких вооружений, называют Израиль, Францию, Китай. Так, по данным издания DefenseNews, Китай уже несколько раз облучал американские спутники видовой разведки серии KeyHole во время их пролета над территорией страны с помощью мощной лазерной наземной установки. О том, что Китай обладает лазерным оружием, говорится и в ежегодном докладе Пентагона конгрессу США о военной мощи КНР в 2006 году. Как там записано, «по меньшей мере одной из противоспутниковых систем, вероятно, является наземная лазерная установка, предназначенная для повреждения или ослепления спутников».
Кстати, еще в 1960-е годы Советский Союз в местечке Сары-Шаган создал огромную лазерную установку «Терра-3». Она была способна за сотни километров определить не только дальность до цели, но и ее размеры, форму, траекторию движения. На «Терре» был создан локатор, который мог зондировать космическое пространство. В 1984 году ученые предлагали «пощупать» им американский корабль «Шаттл» на орбите. Но высшее политическое руководство испугалось возможного шума. США в то время лишь пытались сконструировать систему по получению боевого лазерного луча.

На снимках: «Лучи смерти». Картина Джулио Париджи (1571-1635).
На испытаниях THEL.Фото 1.
Дистанционно управляемая машина разминирования Thor.Фото 2.
Проект «Боинга-747» с химическим лазером. Рис. 2.
Проект космических платформ, оснащенных лазерными «орудиями». Рис. 3.