Поражающие факторы ядерного взрыва и их воздействие. Медико-тактическая характеристика поражающих факторов современных видов оружия

Введение

1. Последовательность событий при ядерном взрыве

2. Ударная волна

3. Световое излучение

4. Проникающая радиация

5. Радиоактивное заражение

6. Электромагнитный импульс

Заключение

Выделение огромного количества энергии, происходящее в ходе цепной реакции деления, приводит к быстрому разогреву вещества взрывного устройства до температур порядка 10 7 К. При таких температурах вещество представляет собой интенсивно излучающую ионизированную плазму. На этом этапе в виде энергии электромагнитного излучения выделяется около 80% энергии взрыва. Максимум энергии этого излучения, называемого первичным, приходится на рентгеновский диапазон спектра. Дальнейший ход событий при ядерном взрыве определяется в основном характером взаимодействия первичного теплового излучения с окружающей эпицентр взрыва средой, а также свойствами этой среды .

В случае если взрыв произведен на небольшой высоте в атмосфере, первичное излучение взрыва поглощается воздухом на расстояниях порядка нескольких метров. Поглощение рентгеновского излучения приводит к образованию облака взрыва, характеризующегося очень высокой температурой. На первой стадии это облако растет в размерах за счет радиационной передачи энергии из горячей внутренней части облака к его холодному окружению. Температура газа в облаке примерно постоянна по его объему и снижается по мере его увеличения. В момент, когда температура облака снижается до примерно 300 тысяч градусов, скорость фронта облака уменьшается до величин, сравнимых со скоростью звука. В этот момент формируется ударная волна, фронт которой "отрывается" от границы облака взрыва. Для взрыва мощностью 20 кт это событие наступает примерно через 0.1 м/сек после взрыва. Радиус облака взрыва в этот момент составляет около 12 метров.

Интенсивность теплового излучения облака взрыва целиком определяется видимой температурой его поверхности. На некоторое время воздух, нагретый в результате прохождения взрывной волны, маскирует облако взрыва, поглощая излучаемую им радиацию, так что температура видимой поверхности облака взрыва соответствует температуре воздуха за фронтом ударной волны, которая падает по мере увеличения размеров фронта. Через примерно 10 миллисекунд после начала взрыва температура во фронте падает до 3000 °С и он вновь становится прозрачным для излучения облака взрыва. Температура видимой поверхности облака взрыва вновь начинает расти и через примерно 0.1 сек после начала взрыва достигает примерно 8000 °С (для взрыва мощностью 20 кт). В этот момент мощность излучения облака взрыва максимальна. После этого температура видимой поверхности облака и, соответственно, излучаемая им энергия быстро падает. В результате, основная доля энергии излучения высвечивается за время меньшее одной секунды.

Формирование импульса теплового излучения и образование ударной волны происходит на самых ранних стадиях существования облака взрыва. Поскольку внутри облака содержится основная доля радиоактивных веществ, образующихся в ходе взрыва, дальнейшая его эволюция определяет формирование следа радиоактивных осадков. После того как облако взрыва остывает настолько, что уже не излучает в видимой области спектра, процесс увеличения его размеров продолжается за счет теплового расширения и оно начинает подниматься вверх. В процессе подъема облако увлекает за собой значительную массу воздуха и грунта. В течение нескольких минут облако достигает высоты в несколько километров и может достичь стратосферы. Скорость выпадения радиоактивных осадков зависит от размера твердых частиц, на которых они конденсируются. Если в процессе своего формирования облако взрыва достигло поверхности, количество грунта, увлеченного при подъеме облака, будет достаточно велико и радиоактивные вещества оседают в основном на поверхности частиц грунта, размер которых может достигать нескольких миллиметров. Такие частицы выпадают на поверхность в относительной близости от эпицентра взрыва, причем за время выпадения их радиоактивность практически не уменьшается.

В случае если облако взрыва не касается поверхности, содержащиеся в нем радиоактивные вещества конденсируются в гораздо меньшие частицы с характерными размерами 0.01-20 микрон. Поскольку такие частицы могут достаточно долго существовать в верхних слоях атмосферы, они рассеиваются над очень большой площадью и за время, прошедшее до их выпадения на поверхность, успевают потерять значительную долю своей радиоактивности. В этом случае радиоактивный след практически не наблюдается. Минимальная высота, взрыв на которой не приводит к образованию радиоактивного следа, зависит от мощности взрыва и составляет примерно 200 метров для взрыва мощностью 20 кт и около 1 км для взрыва мощностью 1 Мт .

Основные поражающие факторы - ударная волна и световое излучение - аналогичны поражающим факторам традиционных взрывчатых веществ, но значительно мощнее.

Ударная волна, формирующаяся на ранних стадиях существования облака взрыва, представляет собой один из основных поражающих факторов атмосферного ядерного взрыва. Основными характеристиками ударной волны являются пиковое избыточное давление и динамическое давление во фронте волны. Способность объектов выдерживать воздействие ударной волны зависит от множества факторов, таких как наличие несущих элементов, материал постройки, ориентация по отношению ко фронту. Избыточное давление в 1 атм (15 фунтов/кв. дюйм), возникающее на расстоянии 2.5 км от наземного взрыва мощностью 1 Мт, способно разрушить многоэтажное здание из железобетона. Радиус области, в которой при взрыве в 1 Мт создается подобное давление составляет около 200 метров.

На начальных стадиях существования ударной волны ее фронт представляет собой сферу с центром в точке взрыва. После того как фронт достигает поверхности, образуется отраженная волна. Так как отраженная волна распространяется в среде, через которую прошла прямая волна, скорость ее распространения оказывается несколько выше. В результате, на некотором расстоянии от эпицентра две волны сливаются возле поверхности, образуя фронт, характеризуемый примерно в два раза большими значениями избыточного давления .

Так, при взрыве 20-килотонного ядерного боеприпаса ударная волна за 2 секунды проходит 1000 м, за 5 секунд – 2000 м, за 8 сек – 3000 м. Передняя граница волны называется фронтом ударной волны. Степень поражения УВ зависит от мощности и положения на ней объектов. Поражающее действие УВ характеризуется величиной избыточного давления.

Поскольку для взрыва данной мощности расстояние, на котором образуется подобный фронт, зависит от высоты взрыва, высоту взрыва можно подобрать для получения максимальных значений избыточного давления на определенной площади. Если целью взрыва является уничтожение укрепленных военных объектов, оптимальная высота взрыва оказывается очень малой, что неизбежно приводит к образованию значительного количества радиоактивных осадков.

Световое излучение - это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва - нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном - полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °С. Когда температура снижается до 1700°C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения - максимальная интенсивность солнечного света 0,14 Вт/см²).


Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела и временное ослепление, а также может возникнуть поражение и защищенных одеждой участков тела.

Ожоги возникают от непосредственного воздействия светового излучения на открытые участки кожи (первичные ожоги), а также от горящей одежды, в очагах пожаров (вторичные ожоги). В зависимости от тяжести поражения ожоги делятся на четыре степени: первая - покраснение, припухлость и болезненность кожи; вторая - образование пузырей; третья - омертвление кожных покровов и тканей; четвертая - обугливание кожи.

Ожоги глазного дна (при прямом взгляде на взрыв) возможны на расстояниях, превышающих радиусы зон ожогов кожи. Временное ослепление возникает обычно ночью и в сумерки и не зависит от направления взгляда в момент взрыва и будет носить массовый характер. Днем оно возникает лишь при взгляде на взрыв. Временное ослепление проходит быстро, не оставляет последствий, и медицинская помощь обычно не требуется.

Еще одним поражающим фактором ядерного оружия является проникающая радиация, представляющая собой поток высокоэнергетичных нейтронов и гамма-квантов, образующихся как непосредственно в ходе взрыва так и в результате распада продуктов деления. Наряду с нейтронами и гамма-квантами, в ходе ядерных реакций образуются также альфа- и бета-частицы, влияние которых можно не учитывать из-за того что они очень эффективно задерживаются на расстояниях порядка нескольких метров. Нейтроны и гамма-кванты продолжают выделяться в течение достаточно длительного времени после взрыва, оказывая воздействие на радиационную обстановку. К собственно проникающей радиации обычно относят нейтроны и гамма-кванты появляющиеся в течение первой минуты после взрыва. Подобное определение связано с тем, что за время порядка одной минуты облако взрыва успевает подняться на высоту, достаточную для того, чтобы радиационный поток на поверхности стал практически незаметен.

Интенсивность потока проникающей радиации и расстояние на котором ее действие может нанести существенный ущерб, зависят от мощности взрывного устройства и его конструкции. Доза радиации, полученная на расстоянии около 3 км от эпицентра термоядерного взрыва мощностью 1 Мт достаточна для того чтобы вызвать серьезные биологические изменения в организме человека. Ядерное взрывное устройство может быть специально сконструировано таким образом, чтобы увеличить ущерб, наносимый проникающей радиацией по сравнению с ущербом, наносимым другими поражающими факторами (так называемое нейтронное оружие).

Процессы, происходящие в ходе взрыва на значительной высоте, где плотность воздуха невелика, несколько отличаются от происходящих при проведении взрыва на небольших высотах. Прежде всего, из-за малой плотности воздуха поглощение первичного теплового излучения происходит на гораздо больших расстояниях и размер облака взрыва может достигать десятков километров. Существенное влияние на процесс формирования облака взрыва начинают оказывать процессы взаимодействия ионизированных частиц облака с магнитным полем Земли. Ионизированные частицы, образовавшиеся в ходе взрыва, оказывают также заметное влияние на состояние ионосферы, затрудняя, а иногда и делая невозможным распространение радиоволн (этот эффект может быть использован для ослепления радиолокационных станций).

Поражение человека проникающей радиацией определяется суммарной дозой, полученной организмом, характером облучения и его продолжительностью. В зависимости от длительности облучения приняты следующие суммарные дозы гамма-излучения, не приводящие к снижению боеспособности личного состава: однократное облучение (импульсное или в течение первых 4 сут.) -50 рад; многократное облучение (непрерывное или периодическое) в течение первых 30 сут. - 100 рад, в течение 3 мес. - 200 рад, в течение 1 года - 300 рад.

Радиоактивное заражение - результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва - продукты деления ядерного горючего, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов (наведённая активность).

Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. Форма следа может быть самой разнообразной, в зависимости от окружающих условий.

Радиоактивные продукты взрыва испускают три вида излучения: альфа, бета и гамма. Время их воздействия на окружающую среду весьма продолжительно.

С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва. При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа – частиц.

Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета - активны, распад многих из них сопровождается гамма - излучением. Периоды полураспада большинства из образующихся радиоктивных изотопов, сравнительно невелики - от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру.

Поражение людей и животных воздействием радиационного заражения может вызываться внешним и внутренним облучением. Тяжелые случаи могут сопровождаться лучевой болезнью и летальным исходом.

Поражения в результате внутреннего облучения появляются в результате попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм. На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

Установка на боевую часть ядерного заряда оболочки из кобальта вызывает заражение территории опасным изотопом 60 °С (гипотетическая грязная бомба) .


При ядерном взрыве в результате сильных токов в ионизованном радиацией и световым излучением воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). Хотя оно и не оказывает никакого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру, электроприборы и линии электропередач. Помимо этого большое количество ионов, возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций. Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении.

Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне ниже 4 км он относительно слаб, сильнее при взрыве 4-30 км, и особенно силён при высоте подрыва более 30 км).

Возникновение ЭМИ происходит следующим образом:

1. Проникающая радиация, исходящая из центра взрыва, проходит через протяженные проводящие предметы.

2. Гамма-кванты рассеиваются на свободных электронах, что приводит к появлению быстро изменяющегося токового импульса в проводниках.

3. Вызванное токовым импульсом поле излучается в окружающее пространство и распространяется со скоростью света, со временем искажаясь и затухая.

Электромагнитный импульс (ЭМИ) влияния на людей по понятным причинам не оказывает, зато выводит из строя электронное оборудование.

ЭМИ воздействует, прежде всего, на радиоэлектронную и электротехническую аппаратуру, находящуюся на военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Когда величина ЭМИ недостаточна для повреждения приборов или отдельных деталей, то возможно срабатывание средств защиты (плавких вставок, грозоразрядников) и нарушение работоспособности линий.

Если ядерные взрывы произойдут вблизи линий энергоснабжения, связи, имеющих большую протяженность, то наведенные в них напряжения могут распространяться по проводам на многие километры и вызывать повреждение аппаратуры и поражение личного состава, находящегося на безопасном удалении по отношению к другим поражающим факторам ядерного взрыва.


Для эффективной защиты от поражающих факторов ядерного взрыва необходимо чётко знать их параметры, способы воздействия на человека и методы защиты.

Укрытие личного состава за холмами и насыпями, в оврагах, выемках и молодых лесах, использование фортификационных сооружений, танков, БМП, БТР и других боевых машин снижает степень его поражения ударной волной. Так, личный состав в открытых траншеях поражается ударной волной на расстояниях в 1,5 раза меньше, чем находящийся открыто на местности. Вооружение, техника и другие Материальные средства от воздействия ударной волны могут быть повреждены или полностью разрушены. Поэтому для их защиты необходимо использовать естественные неровности местности (холмы, складки и т. п.) и укрытия.

Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда. В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается. В целях защиты глаз от светового излучения личный состав должен находиться по возможности в технике с закрытыми люками, тентами, необходимо использовать фортификационные сооружения и защитные свойства местности.

Проникающая радиация не является основным поражающим фактором при ядерном взрыве, от неё легко защититься даже обычными средствами РХБЗ общевойскового образца. Наиболее защищёнными являются объекты - здания с железобетонными перекрытиями до 30см, подземные убежища с заглублением от 2-х метров (погреб, например или любое укрытие 3-4 класса и выше) и бронированная (даже легкобронированная) техника.

Основным способом защиты населения от радиоактивного заражения следует считать изоляцию людей от внешнего воздействия радиоактивных излучений, а также исключение условий, при которых возможно попадание радиоактивных веществ внутрь организма человека вместе с воздухом и пищей.


Список литературы

1. Арустамов Э.А. Безопасность жизнедеятельности.- М.: Изд. Дом «Дашков и К 0 », 2006.

2. Атаманюк В.Г., Ширшев Л.Г. Акимов Н.И. Гражданская оборона. – М.,2000.

3. Подвиг П.Н. Ядерная энциклопедия. /под ред. А.А. Ярошинской. - М.: Благотворительный фонд Ярошинской, 2006.

4. Российская энциклопедия по охране труда: В 3 т. - 2-е изд., перераб. и доп. - М.: Изд-во НЦ ЭНАС, 2007.

5. Характеристика ядерных взрывов и их поражающих факторов. Военная энциклопедия //http://militarr.ru/?cat=1&paged=2 , 2009.

6. Энциклопедия «Кругосвет», 2007.


Подвиг П.Н.Ядерная энциклопедия. /под ред. А.А. Ярошинской. - М.: Благотворительный фонд Ярошинской, 2006.

Характеристика ядерных взрывов и их поражающих факторов. Военная энциклопедия //http://militarr.ru/?cat=1&paged=2 , 2009.

Российская энциклопедия по охране труда: В 3 т. - 2-е изд., перераб. и доп. - М. Изд-во НЦ ЭНАС,2007.

Энциклопедия «Кругосвет», 2007.

Взрывного действия, основанное на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изогона гелия. При термоядерных реакциях выделяется энергии в 5 раз больше, чем при реакциях деления (при одной и той же массе ядер).

Ядерное оружие включает различные ядерные боеприпасы, средства доставки их к цели (носители) и средства управления.

В зависимости от способа получения ядерной энергии боеприпасы подразделяют на ядерные (на реакциях деления), термоядерные (на реакциях синтеза), комбинированные (в которых энергия получается по схеме «деление — синтез — деление»). Мощность ядерных боеприпасов измеряется тротиловым эквивалентом, т. с. массой взрывчатого вещества тротила, при взрыве которою выделяется такое количество энергии, как при взрыве данного ядерного босирипаса. Тротиловый эквивалент измеряется в тоннах, килотоннах (кт), мегатоннах (Мт).

На реакциях деления конструируются боеприпасы мощностью до 100 кт, на реакциях синтеза — от 100 до 1000 кт (1 Мт). Комбинированные боеприпасы могут быть мощностью более 1 Мт. По мощности ядерные боеприпасы делят на сверхмалые (до 1 кг), малые (1 -10 кт), средние (10-100 кт) и сверхкрупные (более 1 Мт).

В зависимости от целей применения ядерного оружия ядерные взрывы могут быть высотными (выше 10 км), воздушными (не выше 10 км), наземными (надводными), подземными (подводными).

Поражающие факторы ядерного взрыва

Основными поражающими факторами ядерного взрыва являются: ударная волна, световое излучение ядерного взрыва, проникающая радиация, радиоактивное заражение местности и электромагнитный импульс.

Ударная волна

Ударная волна (УВ) — область резко сжатого воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давлений и плотности и нагревают до высокой температуры (несколько десятков тысяч градусов). Этот слой сжатого воздуха представляет ударную волну. Передняя граница сжатого слоя воздуха называется фронтом ударной волны. За фронтом УВ следует область разряжения, где давление ниже атмосферного. Вблизи центра взрыва скорость распространения УВ в несколько раз превышает скорость звука. С увеличением расстояния от места взрыва скорость распространения волны быстро падает. На больших расстояниях ее скорость приближается к скорости распространения звука в воздухе.

Ударная волна боеприпаса средней мощности проходит: первый километр за 1,4 с; второй — за 4 с; пятый — за 12 с.

Поражающее воздействие УВ на людей, технику, здания и сооружения характеризуется: скоростным напором; избыточным давлением во фронте движения УВ и временем ее воздействия на объект (фаза сжатия).

Воздействие УВ на людей может быть непосредственным и косвенным. При непосредственном воздействии причиной травм является мгновенное повышение давления воздуха, что воспринимается как резкий удар, ведущий к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами. Косвенное воздействие достигает 80 % от всех поражений.

При избыточном давлении 20-40 кПа (0,2-0,4 кгс/см 2) незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие УВ с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, поражения внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на местности.

Для защиты от воздействия УВ следует использовать: траншеи, щели и окопы, снижающие се действие в 1,5-2 раза; блиндажи — в 2-3 раза; убежища — в 3-5 раз; подвалы домов (зданий); рельеф местности (лес, овраги, лощины и т. д.).

Световое излучение

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи.

Его источник — светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится, в зависимости от мощности ядерного взрыва, до 20 с. Однако сила его такова, что, несмотря на кратковременность, оно способно вызывать ожоги кожи (кожных покровов), поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов объектов. В момент образования светящейся области температура на ее поверхности достигает десятков тысяч градусов. Основным поражающим фактором светового излучения является световой импульс.

Световой импульс — количество энергии в калориях, падающей на единицу площади поверхности, перпендикулярной направлению излучения, за все время свечения.

Ослабление светового излучения возможно вследствие экранирования его атмосферной облачностью, неровностями местности, растительностью и местными предметами, снегопадом или дымом. Так, густой лее ослабляет световой импульс в А-9 раз, редкий — в 2-4 раза, а дымовые (аэрозольные) завесы — в 10 раз.

Для защиты населения от световою излучения необходимо использовать защитные сооружения, подвалы домов и зданий, защитные свойства местности. Любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Проникающая радиация

Проникающая радиация — ноток гамма-лучей и нейтронов, излучаемых из зоны ядерного взрыва. Время ее действия составляет 10-15 с, дальность — 2-3 км от центра взрыва.

При обычных ядерных взрывах нейтроны составляют примерно 30 %, при взрыве нейтронных боеприпасов — 70-80 % от у-излучения.

Поражающее действие проникающей радиации основано на ионизации клеток (молекул) живого организма, приводящей к гибели. Нейтроны, кроме того, взаимодействуют с ядрами атомов некоторых материалов и могут вызвать в металлах и технике наведенную активность.

Основным параметром, характеризующим проникающую радиацию, является: для у-излучений — доза и мощность дозы излучения, а для нейтронов — поток и плотность потока.

Допустимые дозы облучения населения в военное время: однократная — в течение 4 суток 50 Р; многократная — в течение 10-30 суток 100 Р; в течение квартала — 200 Р; в течение года — 300 Р.

В результате прохождения излучений через материалы окружающей среды уменьшается интенсивность излучения. Ослабляющее действие принято характеризовать слоем половинного ослабления, т. с. такой толщиной материала, проходя через которую радиация уменьшается в 2 раза. Например, в 2 раза ослабляют интенсивность у-лучей: сталь толщиной 2,8 см, бетон — 10 см, грунт — 14 см, дерево — 30 см.

В качестве защиты от проникающей радиации используются защитные сооружения , которые ослабляют ее воздействие от 200 до 5000 раз. Слой фунта в 1,5 м защищает от проникающей радиации практически полностью.

Радиоактивное загрязнение (заражение)

Радиоактивное загрязнение воздуха, местности, акватории и расположенных на них объектов происходит в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва.

При температуре примерно 1700 °С свечение светящейся области ядерного взрыва прекращается и она превращается в темное облако, к которому поднимается пылевой столб (поэтому облако имеет грибовидную форму). Это облако движется по направлению ветра, и из него выпадают РВ.

Источниками РВ в облаке являются продукты деления ядерного горючего (урана, плутония), непрореагировавшая часть ядерного горючего и радиоактивные изотопы, образующиеся в результате действия нейтронов на грунт (наведенная активность). Эти РВ, находясь на загрязненных объектах, распадаются, испуская ионизирующие излучения, которые фактически и являются поражающим фактором.

Параметрами радиоактивного загрязнения являются доза облучения (по воздействию на людей) и мощность дозы излучения — уровень радиации (по степени загрязнения местности и различных объектов). Эти параметры являются количественной характеристикой поражающих факторов: радиоактивного загрязнения при аварии с выбросом РВ, а также радиоактивною загрязнения и проникающей радиации при ядерном взрыве.

На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака.

По степени опасности зараженную местность по следу облака взрыва принято делить на четыре зоны (рис. 1):

Зона А — зона умеренного заражения. Характеризуется дозой излучения до полного распада радиоактивных веществ на внешней границе зоны 40 рад и на внутренней — 400 рад. Площадь зоны А составляет 70-80 % площади всего следа.

Зона Б — зона сильного заражения. Дозы излучения на границах равны соответственно 400 рад и 1200 рад. Площадь зоны Б — примерно 10 % площади радиоактивною следа.

Зона В — зона опасного заражения. Характеризуется дозами излучения на границах 1200 рад и 4000 рад.

Зона Г — зона чрезвычайно опасного заражения. Дозы на границах 4000 рад и 7000 рад.

Рис. 1. Схема радиоактивного загрязнения местности в районе ядерного взрыва и по следу движения облака

Уровни радиации на внешних границах этих зон через 1 час после взрыва составляет соответственно 8, 80, 240, 800 рад/ч.

Большая часть радиоактивных осадков, вызывающая радиоактивное заражение местности, выпадает из облака за 10-20 ч после ядерного взрыва.

Электромагнитный импульс

Электромагнитный импульс (ЭМИ) — это совокупность электрических и магнитных полей, возникающих в результате ионизации атомов среды под воздействием гамма-излучения. Продолжительность его действия составляет несколько миллисекунд.

Основными параметрами ЭМИ являются наводимые в проводах и кабельных линиях токи и напряжения, которые могут приводить к повреждению и выводу из строя радиоэлектронной аппаратуры, а иногда и к повреждению работающих с аппаратурой людей.

При наземном и воздушном взрывах поражающее действие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра ядерного взрыва.

Наиболее эффективной защитой от электромагнитного импульса является экранирование линий энергоснабжения и управления, а также радио- и электроаппаратуры.

Обстановка, складывающаяся при применении ядерного оружия в очагах поражения.

Очаг ядерного поражения — это территория, в пределах которой в результате применения ядерного оружия произошли массовые поражения и гибель людей, сельскохозяйственных животных и растений, разрушения и повреждения зданий и сооружений, коммунально-энергетических и технологических сетей и линий, транспортных коммуникаций и других объектов.

Зоны очага ядерного взрыва

Для определения характера возможных разрушений, объема и условий проведения аварийно-спасательных и других неотложных работ очаг ядерного поражения условно делят на четыре зоны: полных, сильных, средних и слабых разрушений.

Зона полных разрушений имеет па границе избыточное давление на фронте ударной волны 50 кПа и характеризуется массовыми безвозвратными потерями среди незащищенного населения (до 100 %), полными разрушениями зданий и сооружений, разрушениями и повреждениями коммунально-энергетических и технологических сетей и линий, а также части убежищ гражданской обороны, образованием сплошных завалов в населенных пунктах. Лес полностью уничтожается.

Зона сильных разрушений с избыточным давлением на фронте ударной волны от 30 до 50 кПа характеризуется: массовыми безвозвратными потерями (до 90 %) среди незащищенного населения, полными и сильными разрушениями зданий и сооружений, повреждением коммунально- энергетических и технологических сетей и линий, образованием местных и сплошных завалов в населенных пунктах и лесах, сохранением убежищ и большинства противорадиационных укрытий подвального типа.

Зона средних разрушений с избыточным давлением от 20 до 30 кПа характеризуется безвозвратными потерями среди населения (до 20 %), средними и сильными разрушениями зданий и сооружений, образованием местных и очаговых завалов, сплошных пожаров, сохранением коммунально-энергетических сетей, убежищ и большинства противорадиационных укрытий.

Зона слабых разрушений с избыточным давлением от 10 до 20 кПа характеризуется слабыми и средними разрушениями зданий и сооружений.

Очаг поражения но количеству погибших и пораженных может быть соизмерим или превосходить очаг поражения при землетрясении. Так, при бомбежке (мощность бомбы до 20 кт) города Хиросима 6 августа 1945 г. его большая часть (60 %) была разрушена, а число погибших составило до 140 000 чел.

Персонал объектов экономики и население, попадающие в зоны радиоактивного заражения, подвергаются воздействию ионизирующих излучений, что вызывает лучевую болезнь. Тяжесть болезни зависит от полученной дозы излучения (облучения). Зависимость степени лучевой болезни от величины дозы излучения приведена в табл. 2.

Таблица 2. Зависимость степени лучевой болезни от величины дозы облучения

В условиях военных действий с применением ядерного оружия в зонах радиоактивного заражения могут оказаться обширные территории, а облучение людей — принять массовый характер. Для исключения переоблучения персонала объектов и населения в таких условиях и для повышения устойчивости функционирования объектов народного хозяйства в условиях радиоактивного заражения па военное время устанавливают допустимые дозы облучения. Они составляют:

  • при однократном облучении (до 4 суток) — 50 рад;
  • многократном облучении: а) до 30 суток — 100 рад; б) 90 суток — 200 рад;
  • систематическом облучении (в течение года) 300 рад.

Вызванные применением ядерного оружия, наиболее сложные. Для их ликвидации необходимы несоизмеримо большие силы и средства, чем при ликвидации ЧС мирного времени.

Боевые свойства и поражающие факторы ядерного оружия. Виды ядерных взрывов и их отличие по внешним признакам. Краткая характеристика поражающих факторов ядерного взрыва и их воздействие на организм человека, боевую технику и вооружение

1. Боевые свойства и поражающие факторы ядерного оружия

Ядерный взрыв сопровождается выделением огромного количества энергии и способен практически мгновенно вывести из строя на значительном расстоянии незащищенных людей, открыто расположенную технику, сооружения и различные материальные средства. Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

2. Виды ядерных взрывов и их отличие по внешним признакам

Ядерные взрывы могут осуществляться в воздухе на различной высоте, у поверхности земли (воды) и под землей (водой). В соответствии с этим ядерные взрывы разделяют на воздушные, высотные, наземные (надводные) и подземные (подводные).

К воздушным ядерным взрывам относятся взрывы в воздухе на такой высоте, когда светящаяся область взрыва не касается поверхности земли (воды) (рис. а).

Одним из признаков воздушного взрыва является то, что пылевой столб не соединяется с облаком взрыва (высокий воздушный взрыв). Воздушный взрыв может быть высоким и низким.

Точка на поверхности земли (воды), над которой произошел взрыв, называется эпицентром взрыва.

Воздушный ядерный взрыв начинается ослепительной кратковременной вспышкой, свет от которой может наблюдаться на расстоянии нескольких десятков и сотен километров.

Вслед за вспышкой в месте взрыва возникает шарообразная светящаяся область, которая быстро увеличивается в размерах и поднимается вверх. Температура светящейся области достигает десятков миллионов градусов. Светящаяся область служит мощным источником светового излучения. Увеличиваясь, огненный шар быстро поднимается вверх и охлаждается, превращаясь в поднимающееся клубящееся облако. При подъеме огненного шара, а затем клубящегося облака создается мощный восходящий поток воздуха, который засасывает с земли поднятую взрывом пыль, которая удерживаются в воздухе в течение нескольких десятков минут.

(рис. б) столб пыли, поднятый взрывом, может соединиться с облаком взрыва; в результате образуется облако грибовидной формы.

Если воздушный взрыв произошел на большой высоте, то столб пыли может и не соединиться с облаком. Облако ядерного взрыва, двигаясь по ветру, утрачивает свою характерную форму и рассеивается.

Ядерный взрыв сопровождается резким звуком, напоминающим сильный раскат грома. Воздушные взрывы могут применяться противником для поражения войск на поле боя, разрушения городских и промышленных зданий, поражения самолетов и аэродромных сооружений.

Поражающими факторами воздушного ядерного взрыва являются: ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

Высотный ядерный взрыв производится на высоте от 10 км и более от поверхности земли. При высотных взрывах на высоте нескольких десятков километров в месте взрыва образуется шарообразная светящаяся область, размеры ее больше, чем при взрыве такой же мощности в приземном слое атмосферы. После остывания светящаяся область превращается в клубящееся кольцевое облако. Пылевой столб и облако пыли при высотном взрыве не образуются.

При ядерных взрывах на высотах до 25-30 км поражающими факторами этого взрыва являются ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

С увеличением высоты взрыва вследствие разрежения атмосферы ударная волна значительно ослабевает, а роль светового излучения и проникающей радиации возрастает. Взрывы, происходящие в ионосферной области, создают в атмосфере районы или области повышенной ионизации, которые могут влиять на распространение радиоволн (ультракоротковолнового диапазона) и нарушать работу радиотехнических средств.

Радиоактивное заражение поверхности земли при высотных ядерных взрывах практически отсутствует.

Высотные взрывы могут применяться для уничтожения воздушных и космических средств нападения и разведки: самолетов, крылатых ракет, спутников, головных частей баллистических ракет.

Наземный ядерный взрыв. Наземным ядерным взрывом называется взрыв на поверхности земли или в воздухе на небольшой высоте, при котором светящаяся область касается земли.

При наземном взрыве светящаяся область имеет форму полусферы, лежащей основанием на поверхности земли. Если наземный взрыв осуществляется на поверхности земли (контактный взрыв) или в непосредственной близости от нее, в грунте образуется большая воронка, окруженная валом земли.

Размер и форма воронки зависят от мощности взрыва; диаметр воронки может достигать несколько сотен метров.

При наземном взрыве образуется мощное пылевое облако и столб пыли, чем при воздушном, причем столб пыли с момента его образования соединен с облаком взрыва, в результате чего в облако вовлекается огромное количество грунта, который придает ему темную окраску. Перемешиваясь с радиоактивными продуктами, грунт способствует их интенсивному выпадению из облака. При наземном взрыве радиоактивное заражение местности в районе взрыва и по следу движения облака значительно сильнее, чем при воздушном. Наземные взрывы предназначаются для разрушения объектов, состоящих из сооружений большой прочности, и поражения войск, находящихся в прочных укрытиях, если при этом допустимо или желательно сильное радиоактивное заражение местности и объектов в районе взрыва или на следе облака.

Эти взрывы применяются и для поражения открыто расположенных войск, если необходимо создать сильное радиоактивное заражение местности. При наземном ядерном взрыве поражающими факторами являются ударная волна, световое излучение, проникающая радиация радиоактивное заражение местности и электромагнитный импульс.

Подземным ядерным взрывом называется взрыв, произведенный на некоторой глубине в земле.

При таком взрыве светящаяся область может не наблюдаться; при взрыве создается огромное давление на грунт, образующаяся ударная волна вызывает колебания почвы, напоминающие землетрясение. В месте взрыва образуется большая воронка, размеры которой зависят от мощности заряда, глубины взрыва и типа грунта; из воронки выбрасывается огромное количество грунта, перемешанного с радиоактивными веществами, которые образуют столб. Высота столба может достигать многих сотен метров.

При подземном взрыве характерного, грибовидного облака, как правило, не образуется. Образующийся столб имеет значительно более темную окраску, чем облако наземного взрыва. Достигнув максимальной высоты, столб начинает разрушаться. Радиоактивная пыль, оседая на землю, сильно заражает местность в районе взрыва и по пути движения облака.

Подземные взрывы могут осуществляться для разрушения особо важных подземных сооружений и образования завалов в горах в условиях, когда допустимо сильное радиоактивное заражение местности и объектов. При подземном ядерном взрыве поражающими факторами являются сейсмовзрывные волны и радиоактивное заражение местности.

Этот взрыв имеет внешнее сходство с наземным ядерным взрывом и сопровождается теми же поражающими факторами, что и наземный взрыв. Разница заключается в том, что грибовидное облако надводного взрыва состоит из плотного радиоактивного тумана или водяной пыли.

Характерным для этого вида взрыва является образование поверхностных волн. Действие светового излучения значительно ослабляется вследствие экранирования большой массой водяного пара. Выход из строя объектов определяется в основном действием воздушной ударной волны.

Радиоактивное заражение акватории, местности и объектов происходит вследствие выпадения радиоактивных частиц из облака взрыва. Надводные ядерные взрывы могут осуществляться для поражения крупных надводных кораблей и прочных сооружений военно-морских баз, портов, когда допустимо или желательно сильное радиоактивное заражение воды и прибрежной местности.

Подводный ядерный взрыв. Подводным ядерным взрывом называется взрыв, осуществленный в воде на той или иной глубине.

При таком взрыве вспышка и светящаяся область, как правило, не видны.

При подводном взрыве на небольшой глубине над поверхностью воды поднимается полый столб воды, достигающий высоты более километра. В верхней части столба образуется облако, состоящее из брызг и паров воды. Это облако может достигать несколько километров в диаметре.

Через несколько секунд после взрыва водяной столб начинает разрушаться и у его основания образуется облако, называемое базисной волной. Базисная волна состоит из радиоактивного тумана; она быстро распространяется во все стороны от эпицентра взрыва, одновременно поднимается вверх и относится ветром.

Спустя несколько, минут базисная волна смешивается с облаком султана (султан - клубящееся облако, окутывающее верхнею часть водяного столба) и превращается в слоисто-кучевое облако, из которого выпадает радиоактивный дождь. В воде образуется ударная волна, а на ее поверхности - поверхностные волны, распространяющиеся во все стороны. Высота волн может достигать десятков метров.

Подводные ядерные взрывы предназначены для уничтожения кораблей и разрушений подводной части сооружений. Кроме того, они могут осуществляться для сильного радиоактивного заражения кораблей и береговой полосы.

3. Краткая характеристика поражающих факторов ядерного взрыва и их воздействие на организм человека, боевую технику и вооружение

Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

Ударная волна

Ударная волна является основным поражающим фактором ядерного взрыва. Она представляет собой область сильного сжатия среды (воздуха, воды), распространяющуюся во все стороны от точки взрыва со сверхзвуковой скоростью. В самом начале взрыва передней границей ударной волны является поверхность огненного шара. Затем, по мере удаления от центра взрыва, передняя граница (фронт) ударной волны отрывается от огненного шара, перестает светиться и становится невидимой.

Основными параметрами ударной волны являются избыточное давление во фронте ударной волны, время ее действия и скоростной напор. При подходе ударной волны к какой-либо точке пространства в ней мгновенно повышается давление и температура, а воздух начинает двигаться в направлении распространения ударной волны. С удалением от центра взрыва давление во фронте ударной волны падает. Затем становится меньше атмосферного (возникает разрежение). В это время воздух начинает двигаться в направлении, противоположном направлению распространения ударной волны. После установления атмосферного давления движение воздуха прекращается.

Ударная волна проходит первые 1000 м за 2 сек, 2000 м - за 5 сек, 3000 м - за 8 сек.

За это время человек, увидев вспышку, может укрыться и тем самым уменьшить вероятность поражения волной или вообще избежать его.

Ударная волна может наносить поражения людям, разрушать или повреждать технику, вооружение, инженерные сооружения и имущество. Поражения, разрушения и повреждения вызываются как непосредственным воздействием ударной, волны, так и косвенно - обломками разрушаемых зданий, сооружений, деревьев и т.п.

Степень поражения людей и различных объектов зависит от того, на каком расстоянии от места взрыва и в каком положении они находятся. Объекты, расположенные на поверхности земли, повреждаются сильнее, чем заглубленные.

Световое излучение

Световое излучение ядерного взрыва представляет собой поток лучистой энергии, источником которой является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Размеры светящейся области пропорциональны мощности взрыва. Световое излучение распространяется практически мгновенно (со скоростью 300000 км/сек) и длится в зависимости от мощности взрыва от одной до нескольких секунд. Интенсивность светового излучения и его поражающее действие уменьшаются с увеличением расстояния от центра взрыва; при увеличении расстояния в 2 и 3 раза интенсивность светового излучения снижается в 4 и 9 раз.

Действие светового излучения при ядерном взрыве заключается в нанесении поражений людям и животным ультрафиолетовыми, видимыми и инфракрасными (тепловыми) лучами в виде ожогов различной степени, а также в обугливании или возгорании воспламеняющихся частей и деталей сооружений, зданий, вооружения, боевой техники, резиновых катков танков и автомобилей, чехлов, брезентов и других видов имущества и материалов. При прямом наблюдении взрыва с близкого расстояния световое излучение причиняет повреждения сетчатке глаз и может вызвать потерю зрения (полностью или частично).

Проникающая радиация

Проникающая радиация представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны и облака ядерного взрыва. Продолжительность действия проникающей радиации, составляете всего несколько секунд, тем не менее, она способна наносить тяжелое поражение личному составу в виде лучевой болезни, особенно если он расположен открыто. Основным источником гамма-излучения являются осколки деления вещества заряда, находящиеся в зоне взрыва и радиоактивном облаке. Гамма-лучи и нейтроны способны проникать через значительные толщи различных материалов. При прохождении через различные материалы поток гамма-лучей ослабляется, причем, чем плотнее вещество, тем больше ослабление гамма-лучей. Например, в воздухе гамма-лучи распространяются на многие сотни метров, а в свинце всего лишь на несколько сантиметров. Нейтронный поток наиболее сильно ослабляется веществами, в состав которых входят легкие элементы (водород, углерод). Способность материалов ослаблять гамма-излучение и поток нейтронов можно характер
изовать величиной слоя половинного ослабления.

Слоем половинного ослабления называется толщина материала, проходя через, которую гамма-лучи и нейтроны ослабляются в 2 раза. При увеличении толщины материала до двух слоев половинного ослабления доза радиации уменьшается в 4 раза, до трех слоев - в 8 раз и т. д.

ЗНАЧЕНИЕ СЛОЯ ПОЛОВИННОГО ОСЛАБЛЕНИЯ ДЛЯ НЕКОТОРЫХ МАТЕРИАЛОВ

Материал

Плотность, г/см 3

Слой половинного ослабления, см

по нейтронам

по гамма-излучению

Полиэтилен

Коэффициент ослабления проникающей радиации при наземном взрыве мощностью 10 тыс. т. для закрытого бронетранспортера равен 1,1. Для танка - 6, для траншеи полного профиля - 5. Подбрустверные ниши и перекрытые щели ослабляют радиацию в 25-50 раз; покрытие блиндажа ослабляет радиацию в 200-400 раз, а покрытие убежища - в 2000-3000 раз. Стена железобетонного сооружения толщиной в 1 м ослабляет радиацию примерно в 1000 раз; броня танков ослабляет радиацию в 5-8 раз.

Радиоактивное заражение местности

Радиоактивное заражение местности, атмосферы и различных объектов при ядерных взрывах вызывается осколками деления, наведенной активностью и не прореагировавшей частью заряда.

Основным источником радиоактивного заражения при ядерных взрывах являются радиоактивные продукты ядерной реакции - осколки деления ядер урана или плутония. Радиоактивные продукты ядерного взрыва, осевшие на поверхность земли, испускают гамма-лучи, бета- и альфа-частицы (радиоактивные излучения).

Радиоактивные частицы выпадают из облака и заражают местность, создавая радиоактивный след на расстояниях в десятки и сотни километров от центра взрыва. По степени опасности зараженную местность по следу облака ядерного взрыва делят на четыре зоны.


Зона А - умеренного заражения. Доза излучения до полного распада радиоактивных веществ на внешней границе зоны составляет 40 рад, на внутренней границе - 400 рад. Зона Б - сильного заражения - 400-1200 рад. Зона В - опасного заражения - 1200-4000 рад. Зона Г - чрезвычайно опасного заражения - 4000-7000 рад.

На зараженной местности люди подвергаются действию радиоактивных излучений, в результате чего у них может развиться лучевая болезнь. Не менее опасно попадание радиоактивных веществ внутрь организма, а также на кожу. Так, при попадании на кожу, особенно на слизистые оболочки полости рта, носа и глаз, даже малых количеств радиоактивных веществ могут наблюдаться радиоактивные поражения.

Вооружение и техника, зараженные РВ, представляют определенную опасность для личного состава, если обращаться, с ними без средств защиты. В целях исключения поражения личного состава от радиоактивности зараженной техники установлены допустимые уровни заражения продуктами ядерных взрывов, не приводящие к лучевому поражению. Если заражение выше допустимых норм, то необходимо удалять радиоактивную пыль с поверхностей, т. е. производить их дезактивацию.

Радиоактивное заражение, в отличие от других поражающих факторов, действует длительное время (часы, сутки, годы) и на больших площадях. Оно не имеет внешних признаков и обнаруживается только с помощью специальных дозиметрических приборов.

Электромагнитный импульс

Электромагнитные поля, сопровождающие ядерные взрывы, называют электромагнитным импульсом (ЭМИ).

При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии нескольких километров от центра взрыва. При высотном ядерном взрыве могут возникнуть поля ЭМИ в зоне взрыва и на высотах 20-40 км от поверхности земли.

Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Сейсмовзрывные волны в грунте

При воздушных и наземных ядерных взрывах в грунте образуются сейсмовзрывные волны, представляющие собой механические колебания грунта. Эти волны распространяются на большие расстояния от эпицентра взрыва, вызывают деформации грунта и являются существенным поражающим фактором для подземных, шахтных и котлованных сооружений.

Источником сейсмовзрывных волн при воздушном взрыве является воздушная ударная волна, действующая на поверхность земли. При наземном взрыве сейсмовзрывные волны образуются как в результате действия воздушной ударной волны, так и вследствие передачи энергии грунту непосредственно в центре взрыва.

Сейсмовзрывные волны формируют динамические нагрузки на конструкции, элементы строений и т. д. Сооружения и их конструкции совершают колебательные движения. Напряжения, возникающие в них, при достижении определенных значений приводить к разрушениям элементов конструкций. Колебания, передаваемые от строительных конструкций на размещаемые в сооружениях вооружение, военную технику и внутреннее оборудование, могут приводить к их повреждениям. Пораженным может оказаться и личный состав в результате действия на него перегрузок и акустических волн, вызываемых колебательным движением элементов сооружений.

Поражающие факторы ядерного оружия

Ядерным оружием называется оружие, поражающее действие которого основано на использовании внутриядерной энергии, выделяющейся при ядерном взрыве. Это оружие включает различные ядерные боеприпасы (боевые головные части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины), снаряженные ядерными зарядными устройствами, средства управления ими и доставки их к цели.

Основной частью ядерного боеприпаса является ядерный заряд, содержащий ядерное взрывчатое вещество (ЯВВ) – уран‑235 или плутоний‑239. Цепная ядерная реакция может развиваться только при наличии критической массы делящегося вещества. До взрыва ЯВВ в одном боеприпасе должно быть разделено на отдельные части, каждая из которых по массе должна быть меньше критической.

Мощность ядерного взрыва принято характеризовать тротиловым эквивалентом.

Центром ядерного взрыва называется точка, в которой происходит вспышка ядерной реакции. По положению центра относительно земли или воды различают ядерные взрывы: космические, высотные, воздушные, наземные, подземные, надводные, подводные.

Воздушным ядерным взрывом называется взрыв, произведенный в воздухе на такой высоте, при которой огненный шар не касается поверхности земли. Он сопровождается кратковременной ослепительной вспышкой, видимый даже в солнечный день на расстоянии сотен километров. Воздушный ядерный взрыв используется для разрушения зданий, сооружений и поражения людей. Он вызывает поражение ударной волной, световым излучением и проникающей радиацией. Радиоактивное заражение местности при воздушном взрыве практически отсутствует, так как радиоактивные продукты взрыва поднимаются вместе с огненным шаром на очень большую высоту, не смешиваясь с частицами грунта.

Наземным ядерным взрывом называется взрыв на поверхности земли или на такой высоте от нее, когда светящаяся область касается грунта и имеет, как правило, форму усеченной сферы. Увеличиваясь в размерах и остывая, огненный шар отрывается от земли, темнеет и превращается в клубящееся облако, которое увлекая за собой столб пыли, через несколько минут приобретает характерную грибовидную форму. При наземном ядерном взрыве в воздух поднимается большое количество грунта. Наземный взрыв применяется для разрушения прочных наземных сооружений.

Надводным ядерным взрывом называется взрыв на поверхности воды или на высоте, при которой светящаяся область касается поверхности воды. Применяется для поражения надводных плавсредств. Поражающими факторами при надводном взрыве являются воздушная волна и волны, образующиеся на поверхности воды. Действие светового излучения и проникающей радиации значительно ослабляется в результате экранирующего действия большой массы водяного пара.

В облако взрыва вовлекается большое количество воды и пара, образовавшегося под действием светового излучения. После остывания облака пар конденсируется и капли воды выпадают в виде радиоактивного дождя, сильно заражая воду и местность в районе взрыва и по направлению движения облака.

Подземным ядерным взрывом называется взрыв, произведенный ниже поверхности земли. При подземном взрыве огромное количество грунта выбрасывается на высоту нескольких километров, а в месте взрыва образуется глубокая воронка, размеры которой больше, чем при наземном взрыве. Подземные взрывы используются для поражения заглубленных сооружений. Основным поражающим фактором подземного ядерного взрыва является волна сжатия, распространяющаяся в грунте. Подземный взрыв вызывает сильное заражение местности в районе взрыва и по следу движения облака.

Подводным ядерным взрывом называется взрыв, произведенный под водой на глубине, которая колеблется в широких пределах. При подводном ядерном взрыве поднимается полый водяной столб с большим облаком в верхней части. Диаметр водяного столба достигает нескольких сотен метров, а высота - нескольких километров и зависят от мощности и глубины взрыва. Основным поражающим фактором подводного взрыва является ударная волна в воде, скорость распространения которой равна скорости распространения звука в воде, т.е. примерно 1500 м/сек. Ударная волна в воде разрушает подводные части кораблей и различных гидротехнических сооружений. Световое излучение и проникающая радиация поглощаются толщей воды и водяными парами. Подводный взрыв вызывает сильное радиоактивное заражение воды. При взрыве вблизи от берега зараженная вода выбрасывается базисной волной на побережье, затопляет его и вызывает сильное заражение объектов, расположенных на берегу.

Одной из разновидностей ядерного оружия является нейтронный боеприпас . Это малогабаритный термоядерный заряд мощностью не более 10 тыс. т, у которого основная доля энергии выделяется за счет реакций синтеза дейтерия и трития, а количество энергии, получаемой в результате деления тяжелых ядер в детонаторе, минимально, но достаточно для начала реакции синтеза. Нейтронная составляющая при проникающей радиации такого малого по мощности ядерного взрыва и будет оказывать основное поражающее действие на людей.

При взрыве ядерного боеприпаса за миллионные доли секунды выделяется колоссальное количество энергии. Температура повышается до нескольких миллионов градусов, а давление достигает миллиардов атмосфер. Высокие температура и давление вызывают световое излучение и мощную ударную волну. Наряду с этим взрыв ядерного боеприпаса сопровождается испусканием проникающей радиации, состоящей из потока нейтронов и гамма‑квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления ядерного взрывчатого вещества, которые выпадают по пути движения облака, в результате чего происходит радиоактивное заражение местности, воздуха и объектов. Неравномерное движение электрических зарядов в воздухе, возникающее под действием ионизирующих излучений, приводит к образованию электромагнитного импульса.

Основными поражающими факторами ядерного взрыва являются:

1) ударная волна – 50% энергии взрыва;

2) световое излучение – 30–35% энергии взрыва;

3) проникающая радиация – 8–10% энергии взрыва;

4) радиоактивное заражение – 3–5% энергии взрыва;

5) электромагнитный импульс – 0,5–1% энергии взрыва.

Ударная волна ядерного взрыва – один из основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна – в воздухе, воде или грунте, ее называют соответственно воздушной волной, ударной волной в воде и сейсмовзрывной волной (в грунте). Воздушной ударной волной называется область резкого сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.



Ударная волна вызывает у человека открытые и закрытые травмы различной степени тяжести. Большую опасность для человека представляет и косвенное воздействие ударной волны. Разрушая здания, убежища и укрытия, она может послужить причиной тяжелых травм. Основной способ защиты людей и техники от поражения ударной волны заключается в изоляции их от действия избыточного давления и скоростного напора. Для этого используются укрытия и убежища различного типа и складки местности.

Световое излучение ядерного взрыва представляет собой электромагнитное излучение, включающее видимую ультрафиолетовую и инфракрасную области спектра. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится или воспламенится. Световое излучение может вызывать ожоги открытых участков тела человека, а в темное время суток – временное ослепление. Источником светового излучения является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров конструкционных материалов боеприпаса и воздуха, а при наземных взрывах – и испарившегося грунта. Размеры светящейся области и время ее свечения зависят от мощности, а форма – от вида взрыва.

Степень воздействия светового излучения на различные здания, сооружения, технику зависит от свойств их конструкционных материалов. Оплавление, обугливание, воспламенение материалов в одном месте могут привести к распространению огня, массовым пожарам.

Защита от светового излучения более проста, чем от других поражающих факторов, поскольку любая непрозрачная преграда, любой объект, создающий тень, могут служить защитой.

Проникающая радиация представляет собой поток гамма‑излучения и нейтронов, испускаемых из зоны ядерного взрыва. Гамма‑излучение и нейтронное излучение различны по своим физическим свойствам. Общим для них является то, что они могут распространяться в воздухе во все стороны на расстояние до 2,5–3 км. Проходя через биологическую ткань, гамма– и нейтронное излучения ионизируют атомы и молекулы, входящие в состав живых клеток, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению специфического заболевания – лучевой болезни.

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

Поражающее действие проникающей радиации на людей вызывается облучением, которое оказывает вредное биологическое действие на живые клетки организма. Проходя через живую ткань проникающая радиация ионизирует атомы и молекулы, входящие в состав клеток. Это приводит к нарушению деятельности клеток, отдельных органов и систем организма. Поражающее действие проникающей радиации зависит от величины дозы облучения и времени, в течение которого эта доза получена. Доза, полученная за короткий промежуток времени, вызывает более сильное поражение, чем доза, равная по величине, но полученная за большее время. Это объясняется тем, что организм с течением времени способен восстанавливать часть пораженных радиацией клеток. Скорость восстановления определяется периодом полувосстановления, равным для людей 28-30 суток. Доза радиоактивного облучения, полученная за первые четверо суток с момента облучения, называется однократной, а за больший период времени - многократной. На военное время доза радиации, не приводящая к снижению работоспособности и боеспособности личного состава формирований принята: однократная (в течение первых четырех суток) 50 Р, многократная в течение первых 10-30 суток – 100 Р, в течение трех месяцев – 200 Р, в течение года – 300 Р.

При наземном ядерном взрыве около 50 % энергии идёт на образование ударной волны и воронки в земле, 30- 40 % в световое излучение, до 5 % на проникающую радиацию и электромагнитное излучение и до 15 % в радиоактивное заражение местности.

При воздушном взрыве нейтронного боеприпаса доли энергии распределяются своеобразно: ударная волна до 10 %, световое излучение 5 - 8 % и примерно 85 % энергии уходит в проникающую радиацию (нейтронное и гамма-излучения)

Ударная волна и световое излучение аналогичны поражающим факторам традиционных взрывчатых веществ, но световое излучение в случае ядерного взрыва значительно мощнее.

Ударная волна разрушает строения и технику, травмирует людей и оказывает отбрасывающее действие быстрым перепадом давления и скоростным напором воздуха. Последующие за волной разрежение (падение давления воздуха) и обратный ход воздушных масс в сторону развивающегося ядерного гриба также могут нанести некоторые повреждения.

Световое излучение действует только на неэкранированные, то есть ничем не прикрытые от взрыва объекты, может вызвать воспламенение горючих материалов и пожары, а также ожоги и поражение зрения человека и животных.

Проникающая радиация оказывает ионизирующее и разрушающее воздействие на молекулы тканей человека, вызывает лучевую болезнь . Особенно большое значение имеет при взрыве нейтронного боеприпаса . От проникающей радиации могут защитить подвалы многоэтажных каменных и железобетонных зданий, подземные убежища с заглублением от 2-х метров (погреб, например или любое укрытие 3-4 класса и выше), некоторой защитой обладает бронированная техника.

Радиоактивное заражение - при воздушном взрыве относительно «чистых» термоядерных зарядов (деление-синтез) этот поражающий фактор сведён к минимуму. И наоборот, в случае взрыва «грязных» вариантов термоядерных зарядов, устроенных по принципу деление-синтез-деление, наземного, заглублённого взрыва, при которых происходит нейтронная активация содержащихся в грунте веществ, а тем более взрыва так называемой «грязной бомбы » может иметь решающее значение.

Электромагнитный импульс выводит из строя электрическую и электронную аппаратуру, нарушает радиосвязь .

В зависимости от типа заряда и условий взрыва энергия взрыва распределяется по-разному. Например, при взрыве обычного ядерного заряда без повышенного выхода нейтронного излучения или радиоактивного загрязнения может быть следующее соотношение долей энергетического выхода на различных высотах :

Доли энергии воздействующих факторов ядерного взрыва
Высота / Глубина Рентгеновское излучение Световое излучение Теплота огненного шара и облака Ударная волна в воздухе Деформация и выброс грунта Волна сжатия в грунте Теплота полости в земле Проникающая радиация Радиоактивные вещества
100 км 64 % 24 % 6 % 6 %
70 км 49 % 38 % 1 % 6 % 6 %
45 км 1 % 73 % 13 % 1 % 6 % 6 %
20 км 40 % 17 % 31 % 6 % 6 %
5 км 38 % 16 % 34 % 6 % 6 %
0 м 34 % 19 % 34 % 1 % менее 1 % ? 5 % 6 %
Глубина камуфлетного взрыва 30 % 30 % 34 % 6 %

Энциклопедичный YouTube

  • 1 / 5

    Световое излучение - это поток лучистой энергии, включающий ультрафиолетовую , видимую и инфракрасную области спектра . Источником светового излучения является светящаяся область взрыва - нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар , при наземном - полусферу.

    Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения - максимальная интенсивность солнечного света 0,14 Вт/см²).

    Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

    При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.

    Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.

    В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.

    Ударная волна

    Большая часть разрушений, причиняемых ядерным взрывом, вызывается действием ударной волны. Ударная волна представляет собой скачок уплотнения в среде, который движется со сверхзвуковой скоростью (более 350 м/с для атмосферы). При атмосферном взрыве скачок уплотнения - это небольшая зона, в которой происходит почти мгновенное увеличение температуры , давления и плотности воздуха. Непосредственно за фронтом ударной волны происходит снижение давления и плотности воздуха, от небольшого понижения далеко от центра взрыва и почти до вакуума внутри огненной сферы. Следствием этого снижения является обратный ход воздуха и сильный ветер вдоль поверхности со скоростями до 100 км/час и более к эпицентру. Ударная волна разрушает здания, сооружения и поражает незащищенных людей, а близко к эпицентру наземного или очень низкого воздушного взрыва порождает мощные сейсмические колебания, способные разрушить или повредить подземные сооружения и коммуникации, травмировать находящихся в них людей.

    Большинство зданий, кроме специально укрепленных, серьёзно повреждаются или разрушаются под воздействием избыточного давления 2160-3600 кг/м² (0,22-0,36 атм).

    Энергия распределяется по всему пройденному расстоянию, из-за этого сила воздействия ударной волны уменьшается пропорционально кубу расстояния от эпицентра.

    Защитой от ударной волны для человека являются убежища . На открытой местности действие ударной волны снижается различными углублениями, препятствиями, складками местности.

    Проникающая радиация

    Электромагнитный импульс

    При ядерном взрыве в результате сильных токов в ионизированном радиацией и световым излучением в воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). Хотя оно и не оказывает никакого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру, электроприборы и линии электропередач. Помимо этого большое количество ионов , возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций . Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении .

    Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне ниже 4 км он относительно слаб, сильнее при взрыве 4-30 км, и особенно силён при высоте подрыва более 30 км (см., например, эксперимент по высотному подрыву ядерного заряда Starfish Prime).

    Возникновение ЭМИ происходит следующим образом:

    1. Проникающая радиация, исходящая из центра взрыва, проходит через протяженные проводящие предметы.
    2. Гамма-кванты рассеиваются на свободных электронах , что приводит к появлению быстро изменяющегося токового импульса в проводниках.
    3. Вызванное токовым импульсом поле излучается в окружающее пространство и распространяется со скоростью света, со временем искажаясь и затухая.

    Под воздействием ЭМИ во всех неэкранированных протяжённых проводниках индуцируется напряжение, и чем длиннее проводник, тем выше напряжение. Это приводит к пробоям изоляции и выходу из строя электроприборов связанных с кабельными сетями, например, трансформаторные подстанции и т. д.

    Большое значение ЭМИ имеет при высотном взрыве до 100 км и более. При взрыве в приземном слое атмосферы не оказывает решающего поражения малочувствительной электротехники, его радиус действия перекрывается другими поражающими факторами. Но зато оно может нарушить работу и вывести из строя чувствительную электроаппаратуру и радиотехнику на значительных расстояниях - вплоть до нескольких десятков километров от эпицентра мощного взрыва, где прочие факторы уже не приносят разрушающий эффект. Может вывести из строя незащищённую аппаратуру в прочных сооружениях, рассчитанных на большие нагрузки от ядерного взрыва (например ШПУ). На людей поражающего действия не оказывает .

    Радиоактивное заражение

    Радиоактивное заражение - результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва - продукты деления ядерного горючего, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов (наведенная радиоактивность).

    Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. Форма следа может быть самой разнообразной, в зависимости от окружающих условий.

    Радиоактивные продукты взрыва испускают три вида излучения: альфа , бета и гамма . Время их воздействия на окружающую среду весьма продолжительно.

    В связи с естественным процессом распада радиоактивность уменьшается, особенно резко это происходит в первые часы после взрыва.

    Поражение людей и животных воздействием радиационного заражения может вызываться внешним и внутренним облучением. Тяжелые случаи могут сопровождаться лучевой болезнью и летальным исходом.

    Установка на боевую часть ядерного заряда оболочки из кобальта вызывает заражение территории опасным изотопом 60 Co (гипотетическая грязная бомба).

    Эпидемиологическая и экологическая обстановка

    Ядерный взрыв в населённом пункте, как и другие катастрофы, связанные с большим количеством жертв, разрушением вредных производств и пожарами, приведёт к тяжёлым условиям в районе его действия, что будет вторичным поражающим фактором. Люди, даже не получившие значительных поражений непосредственно от взрыва, с большой вероятностью могут погибнуть от инфекционных заболеваний и химических отравлений. Велика вероятность сгореть в пожарах или просто расшибиться при попытке выйти из завалов.

    Психологическое воздействие

    Люди, оказавшиеся в районе действия взрыва, кроме физических повреждений, испытывают мощное психологическое угнетающее воздействие от устрашающего вида разворачивающейся картины ядерного взрыва, катастрофичности разрушений и пожаров, исчезновения привычного ландшафта, множества изувеченных, обугленных умирающих вокруг и разлагающихся трупов из-за невозможности их захоронения, гибели родных и близких, осознания причинённого вреда своему организму и ужаса наступающей смерти от развивающейся лучевой болезни . Результатом такого воздействия среди выживших после катастрофы явится развитие острых психозов , а также клаустрофобных синдромов из-за осознания невозможности выйти на поверхность земли, устойчивых кошмарных воспоминаний, влияющие на все последующее существование. В Японии есть отдельное слово, обозначающее людей, ставших жертвами ядерных бомбардировок - «Хибакуся ».

    Государственные спецслужбы многих стран предполагают [ ] , что одной из целей различных террористических группировок может являться завладение ядерным оружием и применение его против мирного населения с целью психологического воздействия, даже если физические поражающие факторы ядерного взрыва будут незначительны в масштабах страны-жертвы и всего человечества. Сообщение о ядерном теракте будет немедленно распространено средствами массовой информации (телевидение, радио, интернет, пресса) и несомненно окажет огромное психологическое воздействие на людей, на что могут рассчитывать террористы.