С чем связан процесс эвтрофикации водоемов. Причины и механизмы эвтрофикации водоемов. Причины и последствия

Аннотация. Выполнен анализ существующих способов борьбы с эвтрофикацией водоёмов. Способы борьбы с эвтрофикацией водоемов и вызванным им «цветением» воды условно разделены на две группы: первая - профилактические мероприятия; вторая - регулирующие мероприятия. По результатам обзора сделан вывод, что не один из перечисленных способов борьбы с эврофикацией водоёмов не может полностью очистить водоём, но применение их в комплексе может быт эффективным, что требует дальнейших исследований.

Ключевые слова: эвтрофикация, профилактические мероприятия; регулирующие мероприятия, биогены, удобрения, земледелия, лесополосы, водохранилища.

Эвтрофикация (от греческого eutrophia - хорошее питание) - чрезмерное увеличение содержания биогенных элементов в водоемах, сопровождающееся повышением их продуктивности. Может быть результатом естественного старения водоема, поступления удобрений или загрязнения сточными (в том числе с полей) водами. Для эвтрофных водоемов характерно наличие богатой растительности, обильного планктона. Эвтрофикация ведет к нарушению экологического равновесия водных объектов, вредит рыболовству и отрицательно влияет на использование вод в питьевых, хозяйственно-бытовых и рекреационных целях . По сути эвтрофикация происходит из-за обогащения экосистемы питательными веществами. В течение длительного периода, обычно нескольких тысяч лет, озера естественным образом изменяют свое состояние с олиготрофного (бедного биогенными элементами) до эвтрофного (богатого ими) или даже дистрофного, т. е. с высоким содержанием в воде не минеральных, а органических веществ. Однако в XX в. произошла ускоренная антропогенная эвтрофикация многих озер, внутренних морей (в частности, Балтийского, Средиземного, Черного) и рек по всему миру. Главной причиной этого стало усиленное применение азотных удобрений и сброс в водоемы больших количеств, содержащих фосфаты бытовых сточных вод. Последнее отражает не только рост народонаселения планеты, но и современную тенденцию к увеличению его городской доли, а также совершенствование канализационных систем .

Способы борьбы с эвтрофикацией водоемов и вызванным им «цветением» воды можно условно разделить на две группы: первая - профилактические мероприятия; вторая - регулирующие мероприятия.

Профилактические мероприятия

Профилактические мероприятия предусматривают полное прекращение сброса в водоем неочищенных и условно очищенных сточных вод промышленных предприятий и бытовых стоков. Практическая реализация профилактических мероприятий - процесс сложный, длительный, капиталоемкий и связан с расширением новых технических и биологических проблем. Основная мера предупреждения эвтрофикации водоемов сводится к их охране от избыточного поступления биогенов, в частности фосфора и азота. Эта мера осуществляется многими путями. В первую очередь к ним относится повышение культуры земледелия, сопровождающееся уменьшением стока биогенов с сельскохозяйственных угодий. Очень важно не применять повышенные дозы удобрений, не дающие заметного экономического эффекта. Другой путь – перехват биогенов, выносимых с сельскохозяйственных угодий.

Для малых водоемов можно сооружать кольцевую дренажную систему с последующим отводом собранных сточных вод за пределы водосбора. Применительно к крупным водоемам важен перехват биогенов, поступающих по гидрографической сети – основному пути поверхностного стока.

Например, в предгорьях Гарца, сооружение, по пути к основному водохранилищу, так называемых «пред- водохранилищ», имеющих площадь в 5–10% от основного, задерживало поступление фосфора в водохранилище на 50%, принимающий в себя речной сток. Резервуар-отстойник водохранилища Есценице понижал концентрацию Р04 и Робщ на 65–90%. В небольших водохранилищах, сооружаемых на малых водотоках, в том числе пересыхающих летом (балки, овраги и др.), от излишка биогенов можно освобождаться путем рыбоводных мероприятий, одновременно получая ценную продукцию. Особенно перспективно использование растительноядных рыб, непосредственно утилизирующих первичную продукцию и повышающих эффективность эксплуатации рыбных хозяйств- деэвтрофикаторов.

Для перехвата биогенов, поступающих в небольшие водоемы с малой водосборной площадью, важно правильное обустройство прибрежной полосы, в частности ее облесение. В условиях Московской области лесная полоса шириной 30 м, почти полностью задерживает поступление биогенов в водоем с пахотного поля, длиной 190 м и уклоном 3°. Лесная полоса не должна вплотную подступать к берегу, во избежание загрязнения водоема листовым опадом. Оставление полосы луга шириной 15 м устраняет эту возможность, особенно при посадке по краю лесной полосы елей. В одном из ручьев США после сведения леса на водосборе вынос фосфора с крупнодисперсной взвесью возрос в 12 раз.

Поступление биогенов в водоемы с коммунальными и другими стоками предупреждается двумя способами. Первый из них – более или менее полное освобождение стоков от биогенов, особенно фосфора. Для этого используют осаждение его (солями алюминия, железа, известью), обратный осмос, ионный обмен и ряд других методов. Например, осаждение фосфора солями железа и алюминия позволило заметно снизить эвтрофикацию Цюрихского озера. В ряде озер Швеции, США, Канады изъятие фосфора из стока достигает 85–95% от исходного количества.

Другой путь обезвреживания стоков – снижение в них концентрации фосфора за счет использования детергентов с меньшим содержанием этого биогена. Например, в округе Эри (США) с 1971 г. было запрещено производство детергентов с содержанием Р выше 8,7%, а в 1972 г. эта норма была снижена до 0,5%. В итоге содержание фосфора в реках округа снизилось на 60%. Наиболее радикальная форма борьбы с биогенами стоков – отведение последних за пределы водосбора. Как уже говорилось, избыточное поступление биогенов – лишь предпосылка эвтрофикации, реализующаяся в определенных гидрологических условиях. Поэтому их регулирование (усиление перемешиваемости вод, аэрации, предупреждение термофикации водоемов) также можно широко использовать для предупреждения эвтрофикации, особенно в небольших водоемах.

При избыточном поступлении биогенов и других условиях, для развития эвтрофикации, она может быть исключена различными химическими, физическими и биологическим методами.

Регулирующие мероприятия

К регулирующим мероприятиям относятся физические, в частности искусственная механическая очистка и аэрация, химический и биологический методы.

Один из них – внесение в водоем различных препаратов, подавляющих первичное продуцирование. Этот способ очень уязвим, так как препараты, ингибирующие фотосинтез, в той или иной мере токсичны для беспозвоночных и рыб.

Физические воздействия сводятся к разбавлению эвтрофицируемых вод чистыми, снижению их прозрачности (взмучивание ила и др.), удалению ила и богатых биогенами вод гиполимниона, а также к аэрации воды. Аэрация дает хорошие результаты при предупреждении эвтрофикации небольших водоемов. В большинстве случаев аэрационные установки работают по принципу подачи воздуха в водоем (прокладка воздухоподающих перфорированных труб в придонном слое) или распыления воды в атмосфере (фонтанирование). С улучшением кислородного режима усиливается минерализация органики, сокращается или прекращается ее накопление в водоеме.

Наиболее перспективно предупреждение эвтрофикации биологическими методами. Еще в 1932 г. Е. Е. Успенский предложил предотвращать развитие водорослей с помощью макрофитов, перехватывающих в прибрежной полосе биогены, поступающие с водосбора. Такой метод особенно ценен, если сопровождается последующим изъятием фитомассы макрофитов. В противном случае после их отмирания биогены снова окажутся в воде, не говоря уже об отрицательном эффекте самого процесса гниения макрофитов в прибрежье. А. В. Францев предложил культивировать вприбрежье два вида дикого риса (водяного и широколистного), бекманию и канареечник, дающие огромную фитомассу с высокими кормовыми качествами. Культивирование этих и некоторых других растений с их последующей уборкой – не только эффективная мера борьбы с эвтрофикацией, но и дополнительный способ укрепления кормовой базы животноводства. В биологическом и экономическом отношениях перспективно использование для борьбы с эвтрофикацией водоемов растительноядных рыб. Наряду с предупреждением эвтрофикации в настоящее время во многих странах прилагаются усилия к деэвтрофикации водоемов. С этой целью частично или полностью заменяют воду, удаляют донные осадки, аэрируют гиполимнион и верхние слои грунта, дестратифицируют водную массу, связывают и осаждают биогены .

Регулирующие мероприятия

Также довольно перспективным методом является кавитация, воздействие на водоемы ультразвуком, вызывающим возникновение в жидкости пузырьков с парогазовой смесью. Разрыв пузырьков сопровождается разрушением близлежащих клеток водорослей. Однако на практике данный способ применялся пока что только в качестве эксперимента в Ладожском озере.

Не один из перечисленных способов борьбы с эврофикацией водоёмов не может полностью очистить водоём, но применение их в комплексе может быт эффективным, что требует дальнейших исследований.

Список литературы

1. «Советская энциклопедия» 2002

2. MedUniver.com

3. Симаков Ю.Г., рабочая программа дисциплины «Санитарная гидробиология»

4. Вдовин Ю.И., Журба М.Г. Водозаборно-очистные сооружения и устройства. – М.: Астрель, 2003 – 156 с.

Эвтрофикация – это процесс повышения продуктивности водоема за счет значительного роста биомассы фитопланктона вследствие поступления в водоем биогенных веществ (в частности, фосфатов и нитратов).

Источники: выщелачивание почв, удобрения, моющие вещества, отходы животноводства, атмосферные аэрозоли, слива канализационных и ливневых городских стоков, дополнительное поступление почвенных наносов вследствие водной эрозии.

Эвтро­фикация приводит к резкому возрастанию биомассы фитопланктона вследст­вие массового размножения сине-зеленых водорослей, вызывающих «цветение» воды, уменьшение разнообразия видов, утрату генофонда, уменьшение способности экосистем к саморегуляции.

Механизм и последствия эвтрофикации заключаются в следующем (Рисунок 4). Поступление в водоем биогенных веществ (соединений фосфора, азота) вызывает массовое развитие фитопланктона, питающегося биогенами в толще воды. Последовательно происходит значительное помутнение воды, угнетение бентосной растительности; снижение концентрации кислорода в глубоких слоях водоема.

Фитопланктон сменяют синезеленые водоросли . Основными их питательными веществами являются фосфор и азот. Продуктивность их в воде лимитировалась низкой концентрацией фосфора в воде. Но так было до середины ХХ в. Бурное развитие промышленности, производство удобрений и моющих средств, отходы животноводства привели к резкому увеличению концентрации в водоемах биогенных веществ.

Токсичность их во время цветения установлена в Киевском водохранилище на р. Днепр, в Куршунском заливе Балтийского моря и т.д. Поэтому основным ограничивающим фактором «цветения» синезеленых водорослей является уменьшение стока биогенных веществ, в основном фосфора, в водные системы.

По сути эвтрофикацию следует понимать как экологическую сукцессию водной экосистемы (обычно пресноводных непроточных водоемов). Однако человеческая деятельность ускоряет процесс естественной эвтрофизации, поэтому данный процесс в настоящее время считают одним из результатов сельскохозяйственного производства, загрязнения окружающей среды; негативного изменения продуктивности водоема и в итоге его потери для хозяйственного использования.

Например , увеличение поступления биогенных веществ (особенно азота и фосфора) в Великие Американские озера привело к их эвтрофированию. В них произошла перестройка трофических цепей: в фитопланктоне доминирующую роль приобрели сине-зеленые водоросли, а это, в свою очередь, привело к смене зоопланктона и в конечном счете сказалось на составе ихтиофауны (американская селедка вытеснила высокосортные породы рыб – хариуса, сига, головня). Аналогичные процессы происходят в Женевском и Ладожском озерах.



Рисунок 4. Механизм эвтрофикации водоема

водоросли в результате совей жизнедеятельности производят сильнейшие

Процессы эвтрофицирования также охватили многие речные экосистемы (особенно малые реки), замкнутые и полузамкнутые морские бассейны.

Особенно пострадало Балтийское море: в 30-х гг. ХХ в донных осадках отсутствовал сероводород, а в 1975 г. площадь сероводородной зоны достигла 84 тыс. км 2 . Во многих морях усилились «красные приливы», связанные с чрезмерным сбросом в них органических веществ и массовой вспышкой численности пирофитовых водорослей (динофлагеллят).

Экологические последствия загрязнения морских экосистем (океанических вод) выражаются в следующих процессах и явлениях:

· нарушении устойчивости экосистем; прогрессирующей эвтрофикации;

· появлении «крас­ных приливов»;

· накоплении химических токсикантов в биоте; снижении биологической продуктивности; возникновении мутагенеза и канцерогенеза в морской среде;

· микробиологическом загрязнении прибрежных районов мо­рей и океанов. Объемы поступления загрязняющих веществ в Мировой океан в последнее время резко возросли, ежегодно сбрасывается до 300 млрд. м 3 сточных вод, 90% которых не подвергаются предварительной обработке.

2.5.2. Чистая путевая вода: проблема и решения

По данным Всемирной организации здравоохранения (ВОЗ) в настоящее время 1,2 млрд. человек не имеют воды в необходимом количестве, миллионы людей умирают ежегодно от болезней, вызванных растворенными в воде веществами. В январе 2008 года на Всемирном экономическом форуме ООН (World Economic Forum Annual Meeting 2008), проходившем в Швейцарии, утверждалось, что к 2025 году население более половины стран мира будет испытывать недостаток в чистой воде, а к 2050 году – 75%.

Количество токсичных веществ постоянно увеличивается как в развитых, так и в развивающихся странах: от тяжелых металлов и продуктов нефтеперегонки до таких канцерогенных соединений, как нитрозоамины, патогенные бактерии и вирусы. Увеличивающееся население Земли, особенно та его часть, что проживает в городах (в 2008 году оно достигло 50%), а также продолжающийся рост потребления воды - особенно в производстве, сельском хозяйстве и энергетике - тянет за собой и большие затраты водных ресурсов из традиционных источников.

Проблема чистой воды надвигается со всех сторон: так например, ученые предполагают, что в ближайшие 30 лет таяние ледников (одни из основных запасов пресной воды на Земле) приведет к сильным скачкам в уровне многих крупных рек, таких как Брахмапутра, Ганг, Хуанхэ, что поставит полтора миллиарда жителей Юго-Восточной Азии под угрозу нехватки питьевой воды. При этом уже сейчас расход воды, например, из реки Хуанхэ настолько велик, что она периодически не достигает моря.

Для того чтобы избежать водного кризиса, разрабатываются новые технологии очистки и дезинфекции воды, её опреснения, а также методы её повторного использования. Однако помимо научных изысканий необходимы действенные методы организации контроля над водными ресурсами стран: к сожалению, в большинстве государств использованием и планированием водных ресурсов занимается несколько организаций (так, в США этим заняты более двадцати разных федеральных агентств). Эта тема стала основной для номера от 19 марта этого года научного журнала Nature. В частности, Марк Шеннон (Mark Shannon) и его коллеги из университета Иллинойса в Эрбане–Шампейн (США) провели обзор новых научных разработок и систем нового поколения в следующих областях: дезинфекции воды и удаления патогенов без использования избыточного количества химических реагентов и образования токсичных побочных продуктов; обнаружение и удаление загрязняющих веществ в низкой концентрации; повторное использование воды, а также опреснение морской и воды из внутренних водоемов. Что немаловажно, эти технологии должны быть относительно недорогими и пригодными к использованию в развивающихся странах.

Тонкая зараза
Дезинфекция особенно важна в развивающихся странах Юго-восточной Азии и Субсахары: именно там патогены, живущие в воде, чаще всего становятся причиной массовых заболеваний. Наряду с болезнетворными организмами - такими, как гельминты (глисты), простейшие одноклеточные, грибы и бактерии, повышенную опасность представляют вирусы и прионы. Свободный хлор - самый распространенный в мире (а также самый дешевый и один из самых эффективных) дезинфектор - отлично справляется с кишечными вирусами, однако бессилен против вызывающих диарею криптоспоридий С.parvum или микобактерий. Ситуация осложняется и тем, что многие возбудители болезней живут в тонких биопленках на стенках водопроводных труб.

В Индии, где потребность в дезинфекции воды ощущается довольно остро, для этих целей применяется жавелевая вода. Фото: WHO
Новые эффективные методы дезинфекции должны состоять из нескольких барьеров: удаление с помощью физико-химических реакций (например, коагуляции, седиментации или мембранной фильтрации) и обезвреживание с помощью ультрафиолета и химических реагентов. Относительно недавно для фотохимического обезвреживания патогенов вновь стали использовать свет видимого спектра, а в некоторых случаях эффективно использование комбинирование УФ с хлором или с озоном. Правда, такой подход иногда вызывает появление побочных вредных веществ: например, от действия озона в воде, содержащей ионы бромида, может появиться канцероген бромат.

В развивающихся странах используется технология дезинфекции воды в бутылях из полиэтилена терефталата (PET) с помощью, во-первых, солнечного света, во-вторых, гипохлорида натрия (этот метод используется в основном в сельской местности). Благодаря хлору удалось снизить частоту желудочно-кишечных заболеваний, однако в областях, где в воде содержится аммиак и органический азот, метод не работает: с этими веществами хлор образует соединения и становится неактивен.

Предполагается, что в будущем методы дезинфекции будут включать действие ультрафиолета и наноструктур. Ультрафиолетовое излучение эффективно в борьбе с бактериями, живущими в воде, с цистами простейших, однако не действует на вирусы. Тем не менее ультрафиолет способен активировать фотокаталитические соединения, например, титана (TiO2), которые в свою очередь способны убивать вирусы. Кроме того, новые соединения, такие как TiO2 с азотом (TiON) или с азотом и некоторыми металлами (палладием), могут активироваться излучением видимой части спектра, на что требуется меньше затрат энергии, чем при облучение ультрафиолетом, или даже просто солнечным светом. Правда, подобные установки для дезинфекции имеют крайне небольшую производительность.

Другой важной задачей в очищении воды является удаление вредных веществ из нее. Существует огромное количество токсичных веществ и соединений (таких как мышьяк, тяжелые металлы, галогенсодержащие ароматические соединения, нитрозоамины, нитраты, фосфаты и многие другие). Список предположительно вредных для здоровья веществ постоянно растет, а многие из них токсичны даже в ничтожных количествах. Обнаружить эти вещества в воде, а потом удалить их в присутствии других, нетоксичных примесей, содержание которых может быть на порядок выше, - сложно и дорого. А кроме всего прочего, это поиск одного токсина может помешать обнаружению другого, более опасного. Методы мониторинга загрязняющих веществ неизбежно связаны с использованием сложного лабораторного оборудования и привлечением квалифицированного персонала, поэтому очень важно везде, где только возможно, находить недорогие и относительно простые способы идентификации загрязнений.

Важна здесь и своего рода «специализация»: например, триоксид мышьяка (As-III) раз в 50 токсичнее пентоксида (As-V), и поэтому необходимо измерять их содержание и вместе, и по отдельности, для последующей нейтрализации или удаления. Существующие же методы измерения или имеют низкий предел точности, или требуют квалифицированных специалистов.

Ученые считают, что перспективным направлением в разработке методов обнаружения вредных веществ является метод молекулярного распознавания (molecular recognition motif), основанном на использовании сенсорных реактивов (вроде знакомой со школы лакмусовой бумажки), вместе с микро- или нанофлюидным управлением (micro/nanofluidic manipulation) и телеметрией. Подобные биосенсорные методы можно применять и к болезнетворным микроогранизмам, живущим в воде. Однако в этом случае надо следить за наличием в воде анионов: их присутствие может нейтрализовать достаточно действенные - при других условиях - методы. Так, при обработке воды озоном бактерии гибнут, но если в воде находятся ионы Br-, происходит окисление до BrO3-, то есть один вид загрязнения меняется на другой.

В настоящее время органические вредные вещества в воде стараются посредством реакций превратить в безобидные азот, углекислый газ и воду. Серьезные анионные загрязнители, такие как нитраты и перхлораты, удаляют с помощью ионообменных смол и обратного осмоса, а токсичные рассолы сливают в хранилища. В будущем, возможно, будут использоваться биметаллические катализаторы для минерализации этих рассолов, а также активные нанокатализаторы в мембранах для трансформации анионов.

Повторное использование воды
Сейчас специалисты по охране природы самозабвенно мечтают о повторном использовании промышленных и городских сточных вод, предварительно доведенных до качества питьевой воды. Но в этом случае приходится иметь дело с огромным количеством всевозможных загрязнителей и патогенов, а также органических веществ, которые должны быть удалены или трансформированы в безвредные соединения. Следовательно, все операции удорожаются и усложняются.

Городские сточные воды обычно проходят обработку в очистных сооружениях, в которых во взвешенном состоянии находятся микробы, удаляющие органику и остатки пищевых веществ, а потом в отстойных резервуарах, где происходит разделение твердых и жидких фракций. Воду после такой очистки можно сбрасывать в поверхностные водоемы, а также использовать для ограниченного полива и на некоторые заводские нужды. В настоящее время одна из активно внедряемых технологий - мембранные биореакторы (Membrane Bioreactor). Эта технология сочетает использование взвешенной в воде биомассы (как в обычных очистных сооружениях) и водных микро- и ультратонких мембран вместо отстойников. Воду после МБР можно свободно использовать для ирригации и для заводских нужд.

МБР также могут принести большую пользу в развивающихся странах с плохой канализацией, особенно в быстрорастущих мегаполисах: они позволяют обрабатывать непосредственно сточные воды, отделяя из них полезные вещества, чистую воду, азот и фосфор. МБР используют также как предварительную обработку воды для обратного осмоса; если же потом обработать её УФ (или фотокаталитическими веществами, реагирующими на видимый свет), то она будет пригодна для питья. В будущем, возможно, системы для «повторного использования воды» будут состоять только из двух этапов: МБР с нанофильтрационной мембраной (что избавит от необходимости этапа обратного осмоса) и фотокаталитического реактора, который послужит преградой для патогенов и уничтожит органические загрязнители с малой молекулярной массой. Правда, одной из серьезных преград является быстрое засорение мембраны, и успех развития этого направления очистки воды во многом зависит от новых модификаций и свойств мембран.

Немалую преграду составляют и законы об охране окружающей среды: во многих странах строго запрещено повторное использование воды для коммунальных нужд. Однако из-за недостачи водных ресурсов меняется и это: так, в США повторное использование воды ежегодно возрастает на 15%.

Без соли
Увеличить запасы пресной воды с помощью опреснения вод морей, океанов и засоленных внутренних водоемов - очень соблазнительная цель, ведь эти запасы составляют 97,5% всей воды на Земле. Технологии опреснения шагнули далеко вперед, особенно за последнее десятилетие, однако до сих пор они требуют много энергии и капиталовложений, что сдерживает их распространение. Скорее всего, доля крупных установок по опреснению воды традиционным (термальным) способом уменьшится: они расходуют слишком много энергии и сильно страдают от коррозии. Предполагается, что будущее за небольшими системами опреснения, рассчитанными на одну или несколько семей (это касается в основном развивающихся стран).

Современные технологии опреснения используют мембранное разделение с помощью обратного осмоса и температурную дистилляцию. Сдерживающими факторами для развития опреснения являются, как уже было сказано, высокое потребление энергии и эксплуатационные расходы, быстрое загрязнение мембран установок, а также проблема утилизации соляного рассола и присутствие в воде остатков загрязнителей с низким молекулярным весом, например, бора.

Перспективность исследований в этом направлении определяется прежде всего снижением удельных затрат энергии, и тут определенный прогресс налицо: если в 1980-х годах они в среднем составляли 10 кВт·ч/м3, то в настоящее время они сократились до 4 кВт·ч/м3. Но есть и другие важные успехи: создание новых материалов для мембран (например, из нанотрубок из углерода), а также создание новых очистных биотехнологий.

Остается надеяться, что в ближайшие годы наука и технологии действительно сильно шагнут вперед - ведь даже оставаясь пока для многих почти незаметным, призрак водного кризиса давно уже бродит не только по Европе, но и по всему миру.

Эвтрофирование – повышение биологической продуктивности водных объектов в результате накопления в воде биогенных элементов под действием антропогенных и естественных факторов.

Эвтрофирование представляет собой естественный процесс эволюции водоема. С момента «рождения» водоем в естественных условиях проходит несколько стадий в своем развитии: на ранних стадиях от ультраолиготрофного до олиготрофного, далее становится мезотрофным и в конце концов водоем превращается в эвтрофный и гиперэвтрофный – происходит «старение» и гибель водоема с образованием болота. Если в естественных условиях эвтрофирование какого-либо озера протекает за 1000 лет и более, то в результате антропогенного воздействия это может произойти в сто и даже тысячу раз быстрее.

Антропогенная эвтрофикация связана с поступлением в водоемы значительного количества биогенных веществ, прежде всего азота и фосфора. Если отношение содержания общего азота к содержанию общего фосфора меньше 10, то первичная продукция фитопланктона лимитируется азотом, при N: P > 17 – фосфором, при N: P = 10-17 – азотом и фосфором одновременно. Для водоемов умеренной зоны решающую роль играет фосфор. В настоящее время критическими концентрациями азота и фосфора (включая общий фосфор, ортофосфаты, общий азот и растворенный неорганический азот аммоний, нитриты и нитраты) во время интенсивного перемешивания вод, при котором создаются потенциальные условия для цветения водорослей, считаются следующие: для фосфора 0,01 мг/дм 3 , для азота 0,3 мг/дм 3 .

Биогенные компоненты поступают в природные экосистемы как водным, так и воздушным путем. Основными загрязнителями водоемов биогенными веществами служат азотные и фосфорные удобрения, отходы животноводства, фосфорсодержащие пестициды. К эвтрофированию может привести строительство водохранилищ без надлежащей очистки ложа, строительство плотин, образование застойных зон, тепловое загрязнение воды, сброс сточных вод, особенно коммунально-бытовых, содержащих детергенты, в том числе и прошедших биологическую очистку,

Основные критерии для характеристики эвтрофирования водоемов – это:

· уменьшение концентрации растворенного кислорода в водной толще;

· увеличение содержания взвешенных частиц, особенно органического происхождения;

· увеличение концентрации фосфора в донных отложениях;

· уменьшение проникновения света (возрастание мутности воды);

· увеличение концентрации газов, образующихся при разложении органических остатков при недостатке кислорода – аммиака, метана, сероводорода;

· показатель кислотности воды при 100% насыщении кислородом (рН 100%);

· последовательная смена популяций водорослей с преобладанием сине-зеленых и зеленых водорослей;


· значительное увеличение биомассы фитопланктона;

· обнаружение альгитоксинов.

В качестве прямого индикатора трофического состояния водоема обычно используется концентрация хлорофилла «а», который является основным фотосинтетическим пигментом. Значение его концентрации в пробе воды является репрезентативным индикатором биомассы водорослей, точной мерой эвтрофирования водоемов. Поэтому определение хлорофилла «а» регулярно используется при измерении «откликов» водоемов на биогенную нагрузку с целью их восстановления.

Вследствие массового размножения сине-зеленых водорослей, вызывающих «цветение» воды, ухудшаются условия жизни гидробионтов и качество воды, прежде всего, ее органолептические свойства. Сине-зеленые водоросли в результате своей жизнедеятельности производят при определенных условиях сильнейшие токсины, которые представляют опасность для живых организмов и человека. Они не имеют ни цвета, ни запаха, не разрушаются при кипячении. Альгитоксины по своей токсичности не имеют себе равных. Они могут вызывать цирроз печени, дерматиты у людей, отравление и гибель животных.

Эвтрофикация

Эвтрофикация в лесу у цитадели г. Лилль, Франция

Для эвтрофных водоёмов характерны богатая литоральная и сублиторальная растительность, обильный планктон . Искусственно несбалансированная эвтрофикация может приводить к бурному развитию водорослей («цветению» вод), дефициту кислорода, замору рыб и животных. Этот процесс можно объяснить малым проникновением солнечных лучей вглубь водоёма (за счёт фитопланктона на поверхности водоёма) и, как следствие, отсутствием фотосинтеза у надонных растений, а значит и кислорода.

Механизм воздействия эвтрофикации на экосистемы водоемов следующий.

1. Повышение содержания биогенных элементов в верхних горизонтах воды вызывает бурное развитие растений в этой зоне (в первую очередь фитопланктона, а также водорослей-обрастателей) и увеличение численности питающегося фитопланктоном зоопланктона. В результате прозрачность воды резко снижается, глубина проникновения солнечных лучей уменьшается, и это ведет к гибели донных растений от недостатка света. После отмирания донных водных растений наступает черед гибели прочих организмов, которым эти растения создают места обитания или для которых они являются вышерасположенным звеном пищевой цепи.

2. Сильно размножившиеся в верхних горизонтах воды растения (особенно водоросли) имеют намного большую суммарную поверхность тела и биомассу. В ночные часы фотосинтез в этих растениях не идет, тогда как процесс дыхания продолжается. В результате в предутренние часы теплых дней кислород в верхних горизонтах воды оказывается практически исчерпанным, и наблюдается гибель обитающих в этих горизонтах и требовательных к содержанию кислорода организмов (происходит так называемый «летний замор»).

3. Отмершие организмы рано или поздно опускаются на дно водоема, где происходит их разложение. Однако, как мы отметили в пункте 1, донная растительность из-за эвтрофикации погибает, и производство кислорода здесь практически отсутствует. Если же учесть, что общая продукция водоема при эвтрофикации увеличивается (см. пункт 2), между производством и потреблением кислорода в придонных горизонтах наблюдается дисбаланс, кислород здесь стремительно расходуется, и все это ведет к гибели требовательной к кислороду донной и придонной фауны. Аналогичное явление, наблюдающееся во второй половине зимы в замкнутых мелководных водоемах, называется «зимним замором».

4. В донном грунте, лишенном кислорода, идет анаэробный распад отмерших организмов с образованием таких сильных ядов, как фенолы и сероводород, и столь мощного «парникового газа» (по своему эффекту в этом плане превосходящего углекислый газ в 120 раз), как метан. В результате процесс эвтрофикации уничтожает большую часть видов флоры и фауны водоема, практически полностью разрушая или очень сильно трансформируя его экосистемы, и сильно ухудшает санитарно-гигиенические качества его воды, вплоть до ее полной непригодности для купания и питьевого водоснабжения.

Антропогенная эвтрофикация

Основные антропогенные источники фосфора и азота: необработанные сточные воды (в особенности из животноводческих комплексов) и смыв удобрений с полей. Во многих странах запрещено использование ортофосфата натрия в стиральных порошках для уменьшения эвтрофикации водоёмов.

См. также


Wikimedia Foundation . 2010 .

Синонимы : Эвтрофикация (от греческого eutrophia – хорошее питание) – обогащение водоемов биогенными элементами, сопровождающееся повышением производительности водоема. Эвтрофикация может быть следствием естественного старения водоема, внесения удобрений или загрязнения сточными водами. По уровню эвтрофикации водоема делятся на олиготрофные (слабо евтрофиковани), мезотрофни (середньоевтрофиковани) и эвтрофных (сильно евтрофиковани). Иногда также в отдельную категорию выделяют гиперевтрофни (над-сильно евтрофиковани) водоемы – такие, где эвтрофикация вызывает массовое отмирание биоты и резкое изменение параметров экосистемы.
Для эвтрофных водоемов характерны богатые и разнообразные литоральной и сублиторальной растительность, обилие планктона. Разбалансирована эвтрофикация может приводить к взрывному развитию одноклеточных водорослей («цветение воды»), дефициту кислорода и, как следствие, гибели высшей растительности, рыб и других животных.
Механизм воздействия гипер-эвтрофикации на экосистемы водоемов является следующим:
Воды искусственно евтрофикованои экспериментальной водоемы (внизу справа), разделенные перегородкой от вод водоемы в природно-сбалансированном состоянии (вверху слева) 1. Повышение содержания биогенных элементов в верхних горизонтах воды вызывает бурное развитие растений в этой зоне (в первую очередь планктонных водорослей, а также водорослей – обрастальникив) и увеличение численности зоопланктона, питающийся фитопланктоном. Как следствие прозрачность воды резко снижается, глубина проникновения солнечных лучей уменьшается, что приводит к гибели донных растений от недостатка света. После гибели донных растений происходит гибель организмов, чей жизненный цикл был с ними связан.
2. Водоросли и бактерии, сильно размножились в верхних горизонтах водоема, имеют гораздо большую суммарную поверхность тела и биомассу, чем нормальный растительный комплекс при постоянном уровне эвтрофикации водоема. При этом в ночные часы фотосинтез в этих растениях не идет, а процесс дыхания продолжается, что требует затрат кислорода. В результате в предрассветной часа, особенно в теплые дни, кислород в верхних горизонтах воды оказывается почти исчерпанным, и наблюдается гибель организмов, обитающих в приповерхностных водах, от недостатка кислорода (так называемый «летний замор»).
3. Большое количество отмерших организмов из верхних слоев водоема опускаются на дно, где проходит их разложения. Но, как указано в п. 1, донная растительность гибнет на ранних стадиях эвтрофикации, и производство кислорода здесь почти не происходит. Если же учесть, что биопродуктивность благодаря эвтрофикации увеличивается (см. п. 2), между производством и потреблением кислорода в придонных горизонтах наблюдается дисбаланс, кислород здесь стремительно уходит, и все это приводит к гибели бентосных организмов, даже не связанных с придонной растительностью. Аналогичное явление, наблюдаемое во второй половине зимы в замкнутых мелководных водоемах, известное как «зимние заморы».
4. В донном грунте, лишенном кислорода, проходит ферментация разложение отмерших организмов с образованием таких сильных ядов как фенолы и сероводород, вызывающие отравление организмов во всех эшелонах водоемы, шо вызывает ше более массированное отмирания, как следствие – дополнительное увеличение потребления кислорода при разложении органики, и т. д.
Евтрофикацийний возгорание в северной части Каспийского моря, спутниковый снимок Как следствие массированной и несбалансированной эвтрофикации большая частно флоры и фауны водоема может быть уничтожена, а экосистема водоема – резко и катастрофически изменена.
Надо заметить, что жизнь на Земле с момента его появления сопровождалось проявлениями эвтрофикации, то есть это явление не характерно исключительно для современной геологической эпохи. Именно грандиозным по масштабам евтрофикацийним явлениям мы обязаны наличием залежей угля, нефти, природного газа и других полезных ископаемых биогенного происхождения (вплоть до некоторых видов железных руд).
К биогенных элементов, что именно и вызывают эвтрофикацию, относятся прежде азот, фосфор и кремний в различных соединениях. Наибольшее значение имеют фосфор и азот, являются обязательными элементами тканей любого живого организма.
Концентрация биогенных элементов и их режим зависят от интенсивности биологических и биохимических процессов в водоеме и от количества биогенов, попадающих в водоем со сточными водами и поверхностным стоком на площади водосбору. Концентрации азота и фосфора характеризуют трофность («кормнисть») водоемы. Режим биогенных элементов рассматривают как исходный показатель потенциальной эвтрофикации.
Считается, что чрезмерная эвтрофикация водоемов начинается при содержании в воде азота в концентрации 0.2-0.3 мг / л, фосфора – 0.01-0.02 мг / л.
При переходе от олиготрофных водоемов к мезотрофни и эвтрофных существенно растет доля аммонийного азота в его общей численности.