Основы химии нефти и газа. Предмет химии нефти и газа. Нефть и газ как природные объекты, источники энергии и сырье для переработки. Происхождение нефти Основы химии нефти и газа

Знание химического состава природных нефтяных систем служит отправной точкой для прогнозирования их фазового состояния и свойств фаз при различных термобарических условиях, соответствующих процессам добычи, транспортировки и переработки нефтяных смесей. Тип смеси - нефть, газоконденсат или газ - также зависит от ее химического состава и сочетания термобарических условий в залежи. Химический состав определяет возможное состояние компонентов нефтяных систем при данных условиях - молекулярное или дисперсное.

Петров Ал. А., написавший серию хорошо известных специалистам монографий, посвященных химическому составу нефтей, утверждает, что в нефтях идентифицировано до 1000 индивидуальных углеводородов состава С1-С40.

Нефтяные системы отличаются многообразием компонентов, способных находиться в молекулярном или дисперсном состоянии в зависимости от внешних условий. Среди них встречаются наиболее и наименее склонные к различного рода межмолекулярным взаимодействиям (ММВ), что в итоге обусловливает ассоциативные явления и исходную дисперсность нефтяных систем при нормальных условиях.

Химический состав для нефти различают как элементный и вещественный.

Основными элементами состава нефти являются углерод (83,5-87 %) и водород (11,5-14 %). Кроме того, в нефти присутствуют:

сера в количестве от 0,1 до 1-2 % (иногда ее содержание может доходить до 5-7 %, во многих нефтях серы практически нет);

азот в количестве от 0,001 до 1 (иногда до 1,7 %);

кислород (встречается не в чистом виде, а в различных соединениях) в количестве от 0,01 до 1 % и более, но не превышает 3,6 %.

Из других элементов в нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %.

В вещественном плане нефть в основном состоит из углеводородов и гетероорганических соединений. Среди последних основное внимание следует обратить на смолоасфальтеновые вещества (CAB), которые можно рассматривать как концентрат наиболее склонных к межмолекулярным взаимодействиям соединений.

Углеводородные соединения

Углеводороды (УВ) представляют собой органические соединения углерода и водорода. В нефти в основном содержатся следующие классы углеводородов.

Алканы или парафиновые углеводороды - насыщенные (предельные) УВ с общей формулой CnH2n+2. Содержание их в нефти составляет 2 - 30-70 %. Различают алканы нормального строения (н-алканы - пентан и его гомологи), изостроения (изоалканы - изопентан и др.) и изопреноидного строения (изопрены - пристан, фитан и др.)

В нефти присутствуют газообразные алканы от С1 до С4 (в виде растворённого газа), жидкие алканы С5 - С16, составляют основную массу жидких фракций нефти и твёрдые алканы состава С17 - С53 и более, которые входят в тяжёлые нефтяные фракции и известны как твёдые парафины. Твёрдые алканы присутствуют во всех нефтях, но обычно в небольших количествах - от десятых долей до 5 % (масс.), в редких случаях - до 7-12 % (масс.). В Томской области нефть Чкаловского месторождения содержит до 18 % твердых парафинов.

В зависимости от внутрипластовых условий и компонентного состава пластовой залежи определяется тип месторождения - газовое, газоконденсатное или нефтяное. Основные компоненты чисто газовых месторождений - низкомолекулярные алканы - метан, этан, пропан и бутан (н- и изостроения) в индивидуальном виде при нормальных условиях (0,1 МПа и 20°С) являются газами. В нефтяных природных газах доминируют алканы.

Кроме алканов в состав природных газов могут входить оксид (СО) и диоксид углерода (СО2), сероводород (Н2S), азот (N2), а также инертные газы - Не, Аг, Ne, Xe. В чисто газовых залежах почти полностью отсутствует конденсат (Табл. 2.1).

Если при изотермическом снижении давления в пласте тяжелые компоненты природного газа выделяются в виде жидкой фазы (конденсата), то такие смеси называют газоконденсатными. При этом часть конденсата может безвозвратно теряться в породе. Содержание конденсата (С5 и высшие) в газе зависит от его состава и пластовых условий (температуры и давления, достигающее 25-40 МПа).

Количественным критерием отнесения залежи к газоконденсатным месторождениям служит газоконденсатный фактор, равный количеству газа (м3) при нормальных условиях, в котором растворен 1 м3 конденсата при пластовых условиях. Залежи, газоконденсатный фактор которых не превышает 104, обычно относят к газоконденсатным.

Таблица 2.1.

Химический состав газов различных месторождений

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 СО2 другие компоненты

Чисто газовые месторождения

Уренгойское 95,1 1,1 0,3 0,07 0,03 0,4 3,0

Медвежье 98,3 0,3 0,1 0,15 - 0,1 1,0

Саратовское 94,7 1,8 0,2 0,1 - 0,2 3,0

Газоконденсатные месторождения

Оренбургское 84,8 4,5 1,4 0,3 1,5 1,15 9,0

Вуктыльское 79,8 8,7 3,9 1,8 6,4 0,1 4,3

Ленинградское 86,9 6,0 1,6 1,0 0,5 1,2 2,8

Попутные газы газонефтяных месторождений

Ромашкинское 39,0 20,0 18,5 6,2 4,7 0,1 11,5

Небит-Дагское 85,7 4,0 3,5 2,0 1,4 2,1 1,3

Мухановское 30,1 20,2 23,6 10,6 4,8 1,5 9,2

Нефть в пласте также содержит газ. Количество растворенного газа в нефти характеризуется величиной "газосодержание" (Го). Газосодержание для пластовых нефтей колеблется от долей единицы до нескольких сотен м3/т. Попутные нефтяные газы при подъеме нефти на поверхность выделяются из нее, пока давление насыщения (Рнас) превышает атмосферное давление. В промысловой практике товарной нефтью считают ту часть пластовой нефти, которая остается в жидком состоянии после сепарации добываемой смеси (и отделения воды) и приведения ее к стандартным (или н.у.) условиям. Содержание в ней газов составляет менее 1 %.

Из нефти и природных газов выделены все алканы нормального строения, начиная от метана до гексатриаконтана С3бН74, однако имеются сведения, что н-алканы в нефтях образуют непрерывный гомологический ряд, простирающийся вплоть до С65-С68 а по другим данным -- и до С78.

Как правило, максимум объемного содержания н-алканов в нефтях приходится на н-гексан (1,8 %) и н-гептан (2,3 %), а затем содержание постепенно снижается, достигая 0,09 % для тритриаконтана С33Н68.

По другим данным практически для всех глубоко превращенных нефтей характерен унимодальный вид кривых распределения н-алканов с максимумом С10-С14 и с равномерным снижением концентраций высокомолекулярных н-алканов (по Петрову Ал.А.). Наблюдается тенденция к снижению содержания н-алканов с ростом температуры выкипания фракций.

В нефти присутствовать всевозможные изомеры алканов: моно-, ди-, три - , тетразамещенные. Из них превалируют в основном монозамещенные, с одним разветвлением. Метилзамещенные алканы по степени убывания располагаются в ряд: 2-метилзамещенные алканы > 3-метилзамещенные алканы > 4-метил-замещенные алканы.

К 60-м годам относится открытие в нефтях разветвленных алканов изопреноидного типа с метальными группами в положениях 2, 6, 10, 14, 18 и т. д. Обнаружено более двадцати таких УВ в основном состава С9-С20. Наиболее распространенными изопреноидными алканами в любых нефтях являются фитан С20Н42 и пристан С19Н40, содержание которых может доходтить до 1,0 -1,5 % и зависит от генезиса и фациальной обстановки формирования нефтей.

Таким образом, алканы в различных пропорциях входят в состав всех природных смесей и нефтепродуктов, а их физическое состояние в смеси - в виде молекулярного раствора или дисперсной системы - определяется составом, индивидуальными физическими свойствами компонентов и термобарическими условиями.

В составе нефтей твёрдые УВ - это многокомпонентные смеси, где наряду с алканами содержатся ароматические и нафтеновые углеводороды. Так, твердые углеводороды, выделенные из дистиллятной фракции (300-400°С) туймазинской нефти, состоят из 50 % н-алканов, 47,1 % нафтеновых УВ с боковыми цепями нормального строения и 2,9 % ароматических УВ с боковыми цепями нормального строения. По мере повышения температур выкипания фракций одной и той же нефти содержание твердых алканов уменьшается.

Атомы углерода в молекуле алкана связаны посредством ковалентной у-связи с постоянной (для свободных изолированных молекул в газовой фазе) длиной связи С-С, равной 0,154 нм, и валентным углом между С-С-связями, равным 112°. Молекулярные параметры н-алканов в газовой фазе несколько изменяются по мере роста числа атомов углерода в молекуле (табл. 2.2).

Таблица 2.2.

Геометрические размеры свободных молекул н-алканов

С2Н6 0,1534 0,1122 - 111,0

С3Н8 0,1532 0,1107 112,0

С4Ню 0,1531 0,1107 112,0 110,3

С5Н12 0,1531 0,1118 112,9 110,4

С6НН 0,1533 0,1118 111,9 109,5

С7Н16 0,1534 0,1121 112,6 109,8

С16Н34 0,1542 0,1130 114,6 110,4

По мнению М. Шахпаронова, обнаруживаемые различия обусловлены разрушением энергетически "невыгодных" и образованием "выгодных" внутримолекулярных водородных связей типа С-Н-С.

В то же время известно, что силы кристаллического поля могут существенно изменять конформацию и молекулярные параметры в результате образования межмолекулярных водородных связей. В конденсированных средах значения таких молекулярных параметров, как барьеры внутреннего вращения, разность энтальпий конформеров, межъядерные расстояния и валентные углы, должны отличаться от наблюдаемых для свободных молекул. В настоящее время различие геометрического строения молекул н-алканов в свободном и конденсированном состояниях еще мало изучено.

В рамках структурно-механического подхода н-алканы классифицируют по способности их молекул к независимой поворотной изомерии концевых метильных групп. Согласно этой классификации, начиная с алканов С8-С9, различают ко-роткоцепные (С8-С17), среднецепные (С18-С40) и длинноцепные (С40-С100) молекулы н-алканов, которые рассматривают как сложные системы с относительно некоррелированными движениями срединных и концевых групп. Знание критической длины цепи молекулы, в целом теряющей кинетическую подвижность по достижении определенной температуры в условиях предкристаллизации при переохлаждении, позволяет рассматривать молекулу как состоящую из независимых фрагментов.

Дисперсионное взаимодействие между молекулами н-алканов при структурно-механическом подходе определяется числом центров дисперсионного взаимодействия, достигающим в точках кристаллизации предельного значения. В рамках таких представлений получает объяснение давно известный факт альтернирования температур кристаллизации четных и нечетных н-алканов по мере роста числа углеродных (п) атомов (рис. 2.1).

Рис. 2.1.

Для нечетных изомеров н-алканов при п < 20 в результате расклинивающего влияния концевых СН3-групп наблюдается уменьшение числа центров дисперсионного взаимодействия в точках кристаллизации, что приводит к понижению температур кристаллизации. Для газообразных УВ, т.е., п < 4 ?Т не определялись.

В кристаллическом состоянии молекулы н-алканов располагаются параллельно. С повышением температуры и уменьшением энергии межмолекулярного взаимодействия расстояния между молекулярными цепями н-алканов увеличиваются, при этом сохраняется предпочтительная параллельная ориентация. В точке плавления расстояния между молекулярными цепями изменяются скачкообразно, при дальнейшем повышении температуры происходит активное раздвижение молекулярных цепей до тех пор, пока молекулы не обретут полную свободу вращения. Структурные исследования жидких н-алканов показывают, что при фиксированной температуре равновесное расстояние (0,56 нм) между ближайшими молекулами н-алканов по мере роста п обнаруживает тенденцию к укорочению, что связано с усилением межмолекулярных взаимодействий.

Алканы в нефтяных системах могут находиться в молекулярном или ассоциированном состояниях. Исследование методом малоуглового рассеяния рентгеновских лучей молекулярной структуры н-алканов в жидком состоянии показало, что их ассоциация происходит по поверхности молекул с помощью сил дисперсионного взаимодействия, а ассоциаты, например н-гептана, при нормальных условиях имеют форму дисков или пластин с размерами 130-200 ?.

Число молекул в ассоциате тем больше, чем ниже температура. Так, в гексадекане при 20°С (т. е. на 2°С выше температуры кристаллизации) число молекул в ассоциате равно 3, а в н-октане при -50°С (т. е. на 6°С выше температуры кристаллизации) - 31. Это объясняется ослаблением теплового движения молекул и усилением энергии молекулярного взаимодействия алканов с ростом длины цепи.

Циклоалканы или нафтеновые углеводороды - насыщенные алициклические УВ. К ним относятся моноциклические с общей формулой CnH2n, бициклические - CnH2n-2, трициклические - CnH2n-4, тетрациклические - CnH2n-6.

По суммарному содержанию циклоалканы во многих нефтях преобладают над другими классами УВ: их содержание колеблется от 25 до 75 % (масс.). Они присутствуют во всех нефтяных фракциях. Обычно их содержание растет по мере утяжеления фракций. Общее содержание нафтеновых углеводородов в нефти растёт по мере увеличения ее молекулярной массы. Исключение составляют лишь масляные фракции, в которых содержание циклоалканов падает за счет увеличения количества ароматических углеводородов.

Из моноциклических УВ в нефти присутствуют в основном пяти- и шестичленные ряды нафтеновых УВ. Распределение моноциклических нафтенов по нефтяным фракциям, их свойства изучены гораздо более полно по сравнению с полициклическими нафтенами, присутствующими в средне- и высококипящих фракциях. В низкокипящих бензиновых фракциях нефтей содержатся преимущественно алкилпроизводные циклопентана и циклогексана [от 10 до 86 % (маесс)], а в высококипящих фракциях - полициклоалканы и моноциклоалканы с алкильными заместителями изопреноидного строения (т.н. гибридные УВ).

Из полициклических нафтенов в нефтях идентифицировано только 25 индивидуальных бициклических, пять трициклических и четыре тетра- и пентациклических нафтена. Если в молекуле несколько нафтеновых колец, то последние, как правило, сконденсированы в единый полициклический блок.

Бицикланы С7-С9 чаще всего присутствуют в нефтях ярко выраженного нафтенового типа, в которых их содержание достаточно высоко. Среди этих углеводородов обнаружены (в порядке убывания содержания): бициклеоктан (пенталан), бициклооктан, бициклооктан, бициклононан (гидриндан), бициклогептан (норборнан) и их ближайшие гомологи. Из трицикланов в нефтях доминируют алкилпергидрофенантрены, среди которых идентифицированы соединения типа (1-4): R = С1, С2; R =С1-С3; R = С2--С4.

нефть кристаллизация залежь углеводород


Тетрацикланы нефти представлены главным образом производными циклопентанопергидрофенантрена - стеранами С27-С30 (5-7):


К пентацикланам нефтей относятся углеводороды ряда гопана (8), лупана (9), фриделана (10) и др.


Достоверных сведений об идентификации полициклоалканов с большим количеством циклов нет, хотя на основе структурно-группового и масс-спектрального анализа можно высказать предположения о присутствии нафтенов с числом циклов, большим пяти. По некоторым данным, высококипящие нафтены содержат в молекулах до 7-8 циклов.

Различия в химическом поведении циклоалканов часто обусловлены наличием избыточной энергии напряжения. В зависимости от размеров цикла циклоалканы подразделяют на малые (С3, С4 - хотя циклопропан и циклобутан в нефтях не обнаружены), нормальные (С5-С7), средние (C8-С11) и макроциклы (от C12 и более). В основе этой классификации лежит зависимость между размером цикла и возникающими в нем напряжениями, влияющими на стабильность. Для циклоалканов и, прежде всего, для их различных производных, характерны перегруппировки с изменением размеров цикла. Так, при нагревании циклогептана с хлоридом алюминия образуется метилциклогексан, а циклогексан при 30-80°С превращается в метилциклопентан. Пяти- и шестичленные углеродные циклы образуются гораздо легче, чем меньшие и большие циклы. Поэтому в нефтях встречается гораздо больше производных циклогексана и циклопентана, чем производных других циклоалканов.

На основе исследования вязкостно-температурных свойств алкилзамещенных моноциклогексанов в широком интервале температур выяснено, что заместитель по мере его удлинения уменьшает среднюю степень ассоциации молекул. Циклоалканы, в отличие от н-алканов с таким же числом углеродных атомов, находятся в ассоциированном состоянии при более высокой температуре.

Арены или ароматические углеводороды - соединения, в молекулах которых присутствуют циклические углеводороды с р-сопряжёнными системами. Содержание их в нефти изменяется от 10-15 до 50 %(масс.). К ним относятся представители моноциклических: бензол и его гомологи (толуол, о-, м-, п-ксилол и др.), бициклические: нафталин и его гомологи, трициклические: фенантрен, антрацен и их гомологи, тетрациклические: пирен и его гомологи и другие.

На основе обобщения данных по 400 нефтям показано, что наибольшие концентрации аренов (37 %) характерны для нефтей нафтенового основания (типа), а наименьшие (20 %) - для нефтей парафинового типа. Среди нефтяных аренов преобладают соединения, содержащие не более трех бензольных циклов в молекуле. Концентрации аренов в дистиллятах, кипящих до 500°С, как правило, снижаются на один-два порядка в следующем ряду соединений: бензолы >> нафталины >> фенантрены >> хризены >> пирены >> антрацены.

Ниже представлено среднее содержание аренов, характерное для нефтей России различных типов, от общего содержания аренов, в %:

бензольные 67 пиреновые 2

нафталиновые 18 антраценовые 1

фенантреновые 8 прочие арены 1

хризеновые и бензфлуореновые 3

Общей закономерностью является рост содержания аренов с повышением температуры кипения. При этом арены высших фракций нефти характеризуются не большим числом ароматических колец, а наличием алкильных цепей и насыщенных циклов в молекулах. В бензиновых фракциях обнаружены все теоретически возможные гомологи аренов C6-C9. Углеводороды с малым числом бензольных колец доминируют среди аренов даже в самых тяжелых нефтяных фракциях. Так, по экспериментальным данным моно-, би-, три-, тетра- и пентаарены составляют соответственно 45-58, 24-29, 15-31, 1,5 и до 0,1 % от массы ароматических углеводородов в дистиллятах 370-535°С различных нефтей.

Моноарены нефтей представлены алкилбензолами. Важнейшими представителями высококипящих нефтяных алкилбензолов являются УВ, содержащие в бензольном ядре до трех метильных и один длинный заместитель линейного, б-метилалкильного или изопреноидного строения. Крупные алкильные заместители в молекулах алкилбензолов могут содержать более 30 углеродных атомов.

Главное место среди нефтяных аренов бициклического строения (диарены) принадлежит прозводным нафталина, которые могут составлять до 95 % от суммы диаренов и содержать до 8 насыщенных колец в молекуле, а второстепенное - производным дифенила и дифенилалканов. В нефтях идентифицированы все индивидуальные алкилнафталины С11, С12 и многие изомеры С13-C15. Содержание дифенилов в нефтях на порядок ниже содержания нафталинов.

Из нафтенодиаренов в нефтях обнаружены аценафтен, флуорен и ряд его гомологов, содержащих метальные заместители в положениях 1-4.

Триарены представлены в нефтях производными фенантрена и антрацена (с резким преобладанием первых), которые могут содержать в молекулах до 4-5 насыщенных циклов.

Нефтяные тетраарены включают углеводороды рядов хризена, пирена, 2,3- и 3,4-бензофенантрена и трифенилена.

Арены нефти, выкипающие выше 500°С и представленные углеводородами C20-C75, распределяются по фракциям в соответствии с данными (табл. 2.3) до 39 атомов углерода в боковых алкильных цепях. Бициклические углеводороды с двумя бензольными и до трех нафтеновых колец выходят в этой же фракции при наличии 22-40 атомов углерода в боковых алкильных цепях. Элюирование трицикли-ческих углеводородов с тремя бензольными и двумя нафтеновыми кольцами во фракции легких аренов возможно при наличии 31-48 атомов углерода в боковых алкильных цепях. В состав средних и тяжелых ароматических фракций входят арены с более короткими боковыми цепями. Моноциклические и бициклические арены, имеющие в боковых цепях 10-20 атомов углерода, и трициклические с 16-30 атомами углерода в боковых цепях выходят в составе средней фракции аренов. Арены с еще более короткими боковыми цепями элюируются в составе тяжелой фракции аренов.

Повышенная склонность аренов, особенно полициклических, к молекулярным взаимодействиям обусловлена низкой энергией возбуждения в процессе гомолитической диссоциации. Для соединений типа антрацена, пирена, хризена и т. п. характерна низкая степень обменной корреляции р-орбиталей и повышенная потенциальная энергия ММВ из-за возникновения обменной корреляции электронов между молекулами. С некоторыми полярными соединениями арены образуют достаточно устойчивые молекулярные комплексы.

Взаимодействие р-электронов в бензольном ядре приводит к сопряжению углерод-углеродных связей. Следствием эффекта сопряжения являются следующие свойства аренов:

Плоское строение цикла с длиной С-С-связи (0,139 нм), занимающей промежуточное значение между простой и двойной С-С-связью;

Эквивалентность всех С-С-связей в незамещенных бензолах;

Склонность к реакциям электрофильного замещения протона на различные группы по сравнению с участием в реакциях присоединения по кратным связям.

Гибридные углеводороды (церезины) - углеводороды смешанного строения: парафино-нафтенового, парафино-ароматического, нафтено-ароматическо-го. В основном, это твёрдые алканы с примесью длинноцепочечных УВ, содержащих циклановое или ароматическое ядро. Они являются основной составной частью парафиновых отложений в процессах добычи и подготовки нефтей.

Таблица 2.3.

Распределение аренов, выкипающих выше 500°С, по фракциям гудрона

Транскрипт

1 Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Уфимский государственный нефтяной технический университет» Библиотека студента УГНТУ КРАТКИЙ КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ «ХИМИЯ НЕФТИ И ГАЗА» Под общей редакцией профессора С. С. Злотского и доцента Л.Н. Зориной Уфа 2011

2 УДК 54(0.75.8) ББК 24.1 К93 Утверждено Редакционно-издательским советом УГНТУ в качестве учебного пособия Авторы: О.Ф.Булатова, С.С.Злотский, Л.Н.Зорина, Н.Н.Михайлова, М.Н.Назаров, Ю.И.Пузин, Л.З.Рольник, Л.Г.Сергеева, Ф.Б.Шевляков, И.Н.Сираева Рецензенты: Директор института нефтехимпереработки, доктор технических наук, профессор Э.Г.Теляшев Старший преподаватель кафедры «Химия» Стерлитамакской государственной педагогической академии, кандидат химических наук Т.П.Мудрик К93 Курс лекций по дисциплине «Химия нефти и газа» /О.Ф.Булатова и др.; под общ. ред. С.С. Злотского и Л.Н.Зориной.- Уфа:Изд-во УГНТУ, с. ISBN Приведены краткие конспекты лекций по дисциплине «Химия нефти и газа». Содержание лекций соответствует государственным образовательным стандартам. В кратком курсе лекций отражен модульный принцип обучения, указано содержание лабораторных занятий, приводится список литературы для дополнительного изучения материала. Краткий курс лекций предназначен для студентов нехимических специальностей направления «Нефтегазовое дело» очной и заочной форм обучения. УДК 54 (0.75.8) ББК24.1 ISBN Уфимский государственный нефтяной технический университет, 2011 Коллектив авторов, 2011

3 3 СОДЕРЖАНИЕ Введение 4 Содержание дисциплины «Химия нефти и газа» для студентов нехимических специальностей: СТ, ГТ, МТ, БСТ, БМТ, ГБ, ГГ 6 Лекция 1. Общая характеристика нефти и газа 9 Лекция 2. Физические свойства нефтей 12 Лекция 3. Методы разделения углеводородов и определения состава нефти газа 15 Лекция 4. Алканы, содержащиеся в нефтях и газах 18 Лекция 5. Циклоалканы, содержащиеся в нефтях 21 Лекция 6. Ароматические углеводороды, содержащиеся в нефтях 24 Лекция 7. Алкены, алкадиены, алкины, образующиеся при переработке нефти 27 Лекция 8. Кислородсодержащие соединения, содержащиеся в нефтях 30 Лекция 9. Сернистые и азотистые соединения, содержащиеся в нефтях 33 Лекция 10. Смолы, асфальтены, содержащиеся в нефтях 36 Лекция 11. Основы нефтепереработки 39 Лекция 12. Термокаталитические превращения углеводородов нефти 42 Лекция 13. Окисление углеводородов. Основные кислородсодержащие продукты нефтехимии. 45 Лекция 14. Методы очистки нефти газа и нефтепродуктов 48 Контрольные вопросы 51 Список рекомендуемой литературы 52

4 4 ВВЕДЕНИЕ Сравнительно недавно (с 2001 года) в учебную программу студентов, обучающихся по направлению «Нефтегазовое дело», включена дисциплина «Химия нефти и газа». Это полностью оправдано и обоснованно, поскольку высококвалифицированные специалисты, в перспективе ответственные руководящие работники ТЭК, обязаны владеть информацией и уверенно разбираться в физических и физико-химических аспектах нефтяного дела, включая получение и применение целевых конечных продуктов и материалов на основе углеводородного сырья. Следует указать, что название данной дисциплины «Химия нефти и газа» несколько устарело и в настоящее время в номенклатуре ВАК заменено на более общее и полное «Нефтехимия». Фактически содержание курса включает вопросы, связанные с химией и технологией нефтяного дела в широком понимании: физикохимия пласта; техническая и прикладная химия бурения; подготовка, транспорт и хранение углеводородного сырья и т.д. Необходимо отметить, что классическому курсу «Химия нефти и газа»- «Нефтехимия» предшествуют такие специальные дисциплины, как «Химия», «Органическая химия», «Аналитическая химия», «Физколлоидная химия». В багаже у студентов нефтегазового направления только базовый курс «Общая и неорганическая химия», в котором органические соединения и углеводороды нефти рассматриваются весьма поверхностно. В этой связи лекционный материал дисциплины «Химия нефти и газа» ориентирован на слушателей, не имеющих углубленные химические знания. Краткий курс лекций наряду со специальными вопросами содержит общеобразовательную информацию (номенклатура, физико-химические свойства и характеристики наиболее распространенных углеводородов и др.). Настоящее пособие, подготовленное коллективом преподавателей кафедры «Общая и аналитическая химия», имеет цель облегчить и упростить понимание физико-химических и химико-технологических аспектов предмета «Химия нефти и газа» - «Нефтехимия» студентам нехимических специальностей. Краткое содержание каждой из 14 лекций включает базовые положения, термины, формулы и определения. Приводятся контрольные вопросы и даны 2 4 источника, где данный раздел изложен более детально и подробно. Имеется расширенный список рекомендуемой учебно-методической литературы и перечислены основные вопросы, выносимые на зачёт или экзамен. Настоящее пособие не заменяет существующие учебники и практикумы, а наоборот, предусматривает более подробное и детальное ознакомление и изучение разделов программы по основным учебникам. В то же время простота и доступность учебного пособия, на наш взгляд, позволяет студентам предварительно познакомиться с тематикой и содержанием лекций, лучше представить схему курса, связать между собой отдельные разделы программы. Авторы - ведущие преподаватели кафедры в краткой, тезисной форме

5 5 обобщили и систематизировали основные параметры, цели и задачи каждой лекции. Это позволяет студентам свести к минимуму непроизводительный расход времени, концентрироваться на ключевых вопросах и положениях данной дисциплины. Мы полагаем, что пособие окажется полезным и интересным всем без исключения студентам, изучающим на 1 курсе дисциплину «Химия нефти и газа», а также будет востребовано молодыми, начинающими преподавателями и научными сотрудниками для подготовки к лекциям, лабораторным и практическим занятиям. Рекомендуем данное пособие учителям, преподавателям средних школ, техникумов, колледжей, а также школьникам - старшеклассникам, заинтересованным в углубленном изучении химии нефти и газа.

6 Содержание дисциплины «Химия нефти и газа» для студентов нехимических специальностей: СТ, ГТ, МТ, БСТ, БМТ, ГБ, ГГ Аудиторные занятия: лекции-28 ч., лабораторные занятия-24 ч. РГР (домашние задания или контрольные работы)-3, зачёт - 0, экзамен 1 Тема Вопросы, изучаемые на лекции Номер лекции no пособию Содержание лабораторных занятий РГР контрольные точки 1 Модуль 1 «Состав и общие свойства нефти» Лекции-6 ч, практические занятия-0 ч, лабораторные занятия-4 ч 1.1 Нефть и газ как природные объекты энергии и сырье для Лекция 1 переработки. Гипотезы происхождения нефти. Элементный и групповой состав нефтей. Классификация нефтей 1.2 Физические свойства нефтей. Плотность, молекулярная масса, Лекция 2 вязкость, температуры застывания, помутнения, кристаллизации. Характеристики пожароопасности нефтей и газов, температуры вспышки, воспламенения, самовоспламенения, пределы взрываемости. Октановое и цетановое числа 1.3 Методы разделения нефти и газа: перегонка, ректификация, Лекция 3 1,2 Определение группового состава нефтей и нефтепродуктов. экстракция, абсорбция, адсорбция, кристаллизация, диффузионные методы. Хроматографические методы разделения и анализа нефти и газа Вода в нефтепродуктах. Методы определения состава нефти и газа. Первичная перегонка нефти 2 Модуль 2 «Углеводороды нефти и газа» Лекции-8ч, практические занятия-0ч, лабораторные занятия-8ч, 2.1 Алканы нефти и газа. Состав и строение. Физические и химические Лекция 4 свойства алканов. Парафины и церезины их влияние на процессы нефтедобычи 2.2 Циклоалканы нефти. Состав и строение. Закономерности их Лекция 5 распределения по фракциям нефти. Физические и химические свойства РГР-0 РГР-0 3 Состав, номенклатура и химические свойства органических соединений нефти и газа. Алкановые углеводороды 4 Состав, номенклатура и химические свойства органических соединений нефти и газа. Нафтеновые углеводороды 6 6

7 7 7 Тема Вопросы, изучаемые на лекции Номер лекции no пособию 2.3 Арены. Состав, распределение по фракциям нефти. Строение, физические и химические свойства. Правила ориентации в реакциях электрофильного замещения в ароматическом кольце. Применение аренов в органическом синтезе Лекция 6 Содержание лабораторных занятий 5 Состав, номенклатура и химиические свойства органических соединений нефти и газа. Ароматические углеводороды 2.4 Алкены, диены и алкины, образующиеся при переработке нефти. Лекция 7 6 Состав, номенклатура и химические Выделение и свойства, использование в нефтехимическом синтезе свойства органических соединений нефти и газа. Ненасыщенные углеводороды 3 Модуль 3 «Гетероатомные и неуглеводородные соединения нефти» Лекции-6 ч, лабораторные занятия-4 ч, РГР Кислородсодержащие соединения. Нефтяные кислоты и фенолы. Физико-химические свойства нефтяных кислот, кислотное число. Влияние кислородсодержащих соединений на процессы нефтедобычи и свойства нефтепродуктов Лекция Сернистые соединения. Основные типы сернистых соединений, их Лекция 9 распределение по фракциям нефти. Физические и химические свойства сернистых соединений. Их влияние на процессы нефтедобычи и свойства нефтепродуктов, происхождение сернистых соединений нефти. 3.3 Азотистые соединения. Содержание азота в нефтях и нефтяных фракциях. Азотистые основании, нейтральные соединения, порфирины. Влияние азотистых соединений на процессы добычи нефти и качество нефтепродуктов 3.4 Лекция 9 Смолы, асфальтены. Состав, строение, свойства. Выделение смол и Лекция 10 асфальтенов нефти. Влияние смол и асфальтенов на процессы нефтедобычи и переработки. Неорганические компоненты нефти. Основные металлы, встречающиеся в нефтях, их влияние на процессы добычи и переработки нефти 7 Состав, номенклатура и химические свойства органических соединений нефти и газа. Кислородсодержащие соединения 8 Состав, номенклатура и химические свойства органических соединений нефти и газа. Серусодержащие соединения РГР контрольные точки 8 Состав, номенклатура и химические свойства органических соеди- Номенклатура КР-1. нений нефти и газа. Азотсодержащие соединения нефти и газа углеводородов КР-2.Химические свойства углеводородов нефти и газа

8 8 Тема Наименование вопросов, изучаемых на лекции Номер лекции по пособию 8 Содержание лабораторных занятий РГР контрольные точки 4 Модуль 4 «Процессы подготовки и переработки нефти и газа» Лекции-8 ч, практические занятия -0 ч, лабораторные занятия-8 ч, РГР Основы переработки нефти. Термический крекинг, пиролиз, коксование. Дегидрирование, циклизация, ароматизация 4.2 Термокаталитические превращения углеводородов нефти. Катализ и катализаторы. Каталитический крекинг, каталитический риформинг. Химические основы процессов, катализаторы, применение в промышленности 4.3 Окисление углеводородов нефти и их производных. Основные кислородсодержащие продукты нефтехимии 4.4 Методы очистки нефти, газа и нефтепродуктов. Гидрогенизация и гидрообессеривание Лекция 11 9,10 Термические превращения углеводородов нефти. Химизм термического крекинга алканов, алкенов, циклоалканов и ароматических углеводородов. Лекция,12 Термокаталитические превращения углеводородов нефти. Химизм каталитического крекинга алканов, алкенов, циклоалканов и ароматических углеводородов. Лекция 13 Лекция 14 ДЗ-1. Основы нефтепереработки

9 9 Лекция 1. Общая характеристика нефти и газа М.Н.Назаров Ключевые слова: источники энергии, сырьё для производства, гипотезы происхождения, элементный состав, классификация. Нефть представляет собой сложную смесь углеводородов и органических соединений серы, азота и кислорода. В настоящее время нефть и газ являются основными источниками энергии в большинстве стран мира. В России топливно-энергетический комплекс является одной из основ экономики. Из нефти вырабатываются бензины, керосины, дизельное, реактивное и другие виды топлива. Другое важнейшее направление использования нефти и газа в качестве сырья для производства самых разнообразных продуктов нефтехимической, строительной и других отраслей промышленности: полимерных материалов, пластмасс, синтетических волокон и каучуков, смазочных и специальных масел, моющих средств, лаков, красок, растворителей, битумов, кокса и множества других. В этом отношении нефть и газ являются на сегодняшний день незаменимыми природными объектами. Важнейшими задачами нефтеперерабатывающей промышленности являются увеличение глубины переработки нефти и повышение качества нефтепродуктов. Нефть и газ основной экспортный товар и главная статья дохода российской экономики. Гипотезы происхождения нефти 1) неорганическая 2) космическая 3) органическая Автором одной из неорганических теорий является Д.И.Менделеев. Согласно этой теории, первые органические соединения образовались в результате взаимодействия карбидов металлов, находящихся в ядре Земли, с водой, проникшей к ним по трещинам: СаС 2 + 2Н 2 О Са(ОН) 2 + С 2 Н 2 Al 4 C Н 2 O 4А1(ОН) 3 + 3СН 4 Под действием высоких температур углеводороды и вода испарялись, поднимались к наружным частям Земли и конденсировались в хорошо проницаемых осадочных породах. Согласно космической теории, нефть образовалась из углерода и водорода при формировании Земли. По мере понижения температуры планеты углеводороды поглощались ею и конденсировались в земной коре. Наибольшее распространение получила органическая теория. Суть её в том, что нефть является продуктом разложения растительных и животных остатков, отлагающихся первоначально в виде морского ила.

10 10 Основным органическим материалом для нефти служат растительные и животные микроорганизмы, развивающиеся в гидросфере. Отмершие остатки таких организмов скапливаются на дне заливов. Одновременно в море сносятся различные минеральные вещества. В конечном итоге органический материал собирается на дне водоема и постепенно погружается все глубже и глубже. Верхний слой такого ила называется пелоген, а частично превращенный ил в большей своей толще - сапропел. По современным представлениям, органическое вещество, захороненное в морском иле, и является материнским веществом нефти. К так называемым сапропелитовым каустобиолитам относятся также сланцы, сапропелитовые угли и т.д. Торф, бурый уголь, каменный уголь, антрацит - гумусовые каустобиолиты (гумус-остатки наземной растительности). Разложение погибших растительных и животных организмов в морских илах под воздействием О 2 и бактерий приводит к образованию: 1) жидких и газообразных продуктов; 2) осадков, устойчивых к химическому и бактерицидному воздействию. Эти осадки постепенно накапливаются в осадочных слоях. По своей химической природе они представляют собой смесь продуктов превращения белков. Дальнейшие превращения этого исходного органического материала в нефть происходят уже в отсутствие О 2. Образование нефти - это очень медленный процесс, протекающий в течение миллионов лет под воздействием повышенной температуры (С), повышенного давления (атм) и биохимической деятельности микроорганизмов. Элементный состав нефти. Основными элементами, входящими в состав нефти, являются С и Н. Содержание С колеблется в пределах 82-87%, H %, S-0,1-5%. Содержание N и О у большинства нефтей не превышает десятых долей процента. Нефть состоит в основном из смеси метановых (алкановых), нафтеновых (циклоалкановых) и ароматических углеводородов. Кроме этого, в нефтях присутствуют кислородные, сернистые и азотистые соединения. К кислородным соединениям нефти относятся нафтеновые кислоты, фенолы, асфальто-смолистые вещества. Сернистые соединения это H 2 S, меркаптаны, сульфиды, тиофены, тиофаны, азотистые соединения гомологи пиридина, гидропиридина и гидрохинолина. Компонентами нефти являются также растворенные в ней газы, вода и минеральные соли. Содержание газов (С 1 -С 4) в нефти колеблется от десятых долей до 4%, Н 2 О от 0,5 до 10% и выше, минеральных солей от 0,1 до 4000 мг/л и выше. Кроме того, минеральные вещества содержатся в нефтях в виде растворов солей органических кислот, в комплексных соединениях и др. Состав минеральных компонентов определяется в золе, получаемой при сжигании нефти. Содержание золы не превышает десятых долей процента, считая на Н. В золе обнаружено до 20 различных элементов (Са, Fe, Si, Zn, Сu, Al, Mo, Ni, V, Na, Sn, Ti, Mn, Sr, Pb, Co, Ag, Ba, Cr и др.), содержание которых колеблется от до %.

11 11 В тяжелой части нефти содержатся смолисто-асфальтеновые вещества. Это сложная смесь наиболее высокомолекулярных соединений, представляющих собой гетероорганические соединения со сложной гибридной структурой, включающей серу, кислород, азот и некоторые металлы. Наиболее богаты смолисто-асфальтеновыми веществами молодые нефти с высоким содержанием ароматических соединений. Классификация нефтей Нефти могут быть классифицированы по содержанию в них углеводородов различного строения (химическая классификация), по содержанию серы и по качеству получаемых нефтепродуктов (технологическая классификация). В основу химической классификации нефти положен групповой углеводородный состав фракции, выкипающей в пределах С. В зависимости от преобладания в этой фракции углеводородов какого-либо одного класса (выше 50%) нефти делятся на 3 основных типа: метановые (М), нафтеновые (Н), ароматические (А). При содержании в этой фракции более 25% углеводородов других классов нефти делятся на смешанные типы: метанонафтеновые (М-Н), нафтенометановые (Н-М), ароматическонафтеновые (А-Н), нафтеноароматические (Н-А) и т.д. По технологической классификации нефти в зависимости от содержания в ней серы делятся на 3 класса: 1) малосернистые, с содержанием S от 0 до 0,5%; 2) сернистые, с содержанием S от 0,5 до 2%; 3) высокосернистые, с содержанием S более 2%. Кроме того, нефти подразделяют на типы по выходу светлых фракций, перегоняющихся до С; группы по потенциальному содержанию базовых масел; подгруппы по индексу вязкости базовых масел; виды - по содержанию парафинов в нефти. Контрольные вопросы 1 Нефть и газ как источники энергии и сырье для переработки. 2 Гипотезы происхождения нефти. 3 Элементный и групповой состав нефтей. 4 Виды классификации нефтей. Список рекомендуемой литературы 1 Сыркин А.М., Мовсумзаде Э.М. Основы химии нефти и газа. - Уфа: Изд-во УГНТУ, C Рябов В.Д. Химия нефти и газа.- М.: ИД «ФОРУМ», C Виржичинская С.В., Дигуров Н.Г., Сиюшин С.А. Химия и технология нефти и газа: учеб. пособие.- М.: ИД «ФОРУМ», C.6-11,

12 12 Лекция 2. Физические свойства нефтей М.Н.Назаров Ключевые слова: плотность, молекулярная масса, вязкость, температуры застывания, помутнения, кристаллизации, температуры вспышки, воспламенения, самовоспламенения, пределы взрываемости, октановое и цетановое числа. Физические свойства нефтей и их фракций зависят от их химического состава, структуры и соотношения отдельных компонентов. Так как нефть и её фракции состоят из большого числа различных веществ, их свойства могут выражаться лишь усредненными характеристиками. Практические потребности привели к необходимости характеризовать нефть и её фракции значительным числом показателей. Плотность (ρ) величина, определяемая как отношение массы вещества к занимаемому объему (кг/м 3). Относительная плотность (ρ 20 4) - отношение плотности рассматриваемого вещества к плотности стандартного вещества (чаще всего воды при 4 0 С). Обычно определение плотности проводят при 20 0 С - в России, 15,56 0 С (60 0 F) - в США и в Англии. Если определение плотности проводят при каких-либо других значениях температуры, то используют поправку (γ): р 20 4 = p t 4 + γ(t - 20), где γ - коэффициент объёмного расширения (справочная информация); t - температура, при которой определялась плотность. В среднем относительная плотность нефтей колеблется от 0,82 до 0,90. Обычно плотность уменьшается с ростом температуры, растёт с увеличением геологического возраста и глубины залегания нефти. Плотность парафинов меньше плотности аренов. Содержание в нефти лёгких фракций сказывается на плотности больше, чем содержание смол. Различие в плотности между лёгкими и средними фракциями существеннее, чем между средними и тяжёлыми (смолами). Вязкость - свойство жидкостей (газов) оказывать сопротивление перемещению одной части жидкости относительно другой. Различают динамическую (Па с); кинематическую (м 2 /с); условную вязкости. Динамическая вязкость (ν) - это сопротивление, оказываемое жидкостью при перемещении относительно друг друга со скоростью 1 м/с двух её слоев площадью 1 м 2 каждый, находящихся на расстоянии 1 м, под действием приложенной силы в 1Н. Величина, обратная динамической вязкости, называется текучестью (φ). Кинематическая вязкость (η) равна отношению динамической вязкости к плотности жидкости при температуре определения. Условная вязкость - это величина, которая выражается отношением времени вытекания определённого объёма нефтепродукта и воды из стандартного прибора (вискозиметра). Вязкость существенно зависит от

13 13 температуры - с ростом температуры вязкость понижается, поэтому всегда указывается температура, при которой проведено измерение. Наиболее пологую вязкостно-температурную кривую имеют нормальные алканы, а наиболее крутую - арены. Вязкость разветвлённых алканов незначительно больше вязкости их изомеров нормального строения и мало изменяется при понижении температуры. Наличие в молекулах углеводородов циклических фрагментов увеличивает вязкость и её изменение с изменением температуры. Вязкость алканов имеет наименьшие значения. Молекулярная масса - важнейшая физико-химическая характеристика вещества. Она связана с температурой кипения и входит в состав комбинированных показателей. Молекулярная масса сырых нефтей находится в пределах г/моль. Молекулярная масса фракций возрастает с ростом их температуры кипения. Молекулярную массу нефтепродуктов определяют различными методами: криоскопическим; эбулиоскопическим; осмометрическим. Используют также эмпирические формулы, в которых молекулярная масса связана с другими характеристиками. Наиболее распространённая эмпирическая формула - формула Воинова: Мcp = а + bt cp + ct 2 cp, где a, b, с - постоянные для каждого класса углеводородов. Для алканов она имеет вид Mcp = ,3t cp + 0,001t 2 cp. Температура застывания, помутнения и кристаллизации. Застывание нефтепродуктов или выпадение в осадок отдельных компонентов при охлаждении крайне нежелательно. Температура кристаллизации температура, при которой в одной или многих точках объёма образуются кристаллизационные центры, разрастающиеся за счёт кристаллизации на них материала из окружающей среды. Кристаллизация сопровождается помутнением. Температура помутнения температура, при которой появляются «облака» мелких кристаллов. Температурой застывания считается температура, при которой охлаждаемая в пробирке фракция не изменяет уровня при наклоне пробирки на Характеристики пожароопасности Температурой вспышки называется минимальная температура, при которой пары нефтепродукта образуют с воздухом смесь, способную к кратковременному образованию пламени при внесении в неё внешнего источника воспламенения. Вспышка представляет собой слабый взрыв, который возможен в строго определенных концентрационных пределах в смеси углеводородов с воздухом. Верхний предел взрываемости характеризуется максимальной концентрацией паров органического вещества в смеси с воздухом, выше которой воспламенение и горение при внесении внешнего источника воспламенения невозможно из-за недостатка кислорода.

14 14 Нижний предел взрываемости находится при минимальной концентрации органического вещества в воздухе, ниже которой горение невозможно, так как количество теплоты, выделившейся в месте локального воспламенения, недостаточно для протекания реакции во всем объеме. Температурой воспламенения называется минимальная температура, при которой пары испытуемого продукта при внесении внешнего источника воспламенения образуют устойчивое незатухающее пламя. Температура воспламенения всегда выше температуры вспышки, часто довольно значительно - на несколько десятков градусов. Температурой самовоспламенения называется минимальная температура, при которой пары нефтепродукта в смеси с воздухом воспламеняются без внешнего источника воспламенения. Температура самовоспламенения выше температуры вспышки на несколько сот градусов. Детонация особый ненормальный характер сгорания топлива в двигателе. Детонационная стойкость оценивается октановым числом это условная единица измерения, численно равная процентному (по объёму) содержанию изооктана в его смеси с н-гептаном, эквивалентной по детонационной стойкости испытуемому топливу при стандартных условиях испытания. Моторные свойства дизельных топлив оцениваются цетановым числом процентное содержание (по объёму) цетана в смеси с α-метилнафталином, эквивалентной по самовоспламеняемости испытуемому топливу, при сравнении топлив в стандартных условиях испытания. Контрольные вопросы 1 Плотность нефтей, молекулярная масса, вязкость. 2 Температура кристаллизации, помутнения, застывания. 3 Характеристика пожароопасности нефтей и нефтепродуктов. 4 Октановое и цетановое числа. Список рекомендуемой литературы 1 Сыркин А.М., Мовсумзаде Э.М. Основы химии нефти и газа. - Уфа: Изд-во УГНТУ, C Рябов В.Д. Химия нефти и газа.- М.: ИД «ФОРУМ», C Виржичинская С.В., Дигуров Н.Г., Сиюшин С.А. Химия и технология нефти и газа: учеб. пособие.- М.: ИД «ФОРУМ», C.11-31,

15 15 Л.Г.Сергеева Лекция 3. Методы разделения углеводородов и определения состава нефти и газа Ключевые слова: перегонка, ректификация, флегма, экстракция, кристаллизация, молекулярная диффузия, адсорбция, абсорбция, хроматография. Нефть - это сложная смесь жидких органических веществ, в которой растворены различные твердые углеводороды, смолистые вещества и сопутствующие газы. Разделение сложных смесей на более простые называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. Для разделения нефти на узкие однородные группы применяются следующие методы: дистилляционные (атмосферная перегонка и ректификация, перегонка под вакуумом и азеотропная перегонка); адсорбционные (адсорбция и хроматография); абсорбционные (экстракция) и кристаллизационные. Наиболее распространенные методы фракционирования дистилляционные. К ним относятся перегонка и ректификация. Сущность атмосферной перегонки заключается в том, что смесь непрерывно нагревают, при этом постепенно отгоняются её компоненты от низкокипящих до высококипящих. По мере повышения температуры кипения компонентов повышают и температуру нагревания разделяемой смеси. Отбирая фракции в заранее заданных температурных интервалах и измеряя их количество, можно получить представление о фракционном составе нефти. Под фракционным составом нефти или нефтепродуктов понимают количественное содержание веществ в нефти, выкипающих в определенных температурных границах. Атмосферная перегонка применяется для грубого разделения на широкие фракции. При заводской переработке нефти отбирают следующие фракции или дистилляты: 1) бензиновые (нач. кипения до С); 2) лигроиновые (С); 3) керосиновые (С); 4) газойлевые (С). Из этих дистиллятов в дальнейшем вырабатывают светлые нефтепродукты. Остаток после отбора фракций до С называется мазутом. Разгонка мазута на масляные фракции осуществляется под вакуумом для предотвращения его термического разложения. Отбор фракций ведется не по температуре кипения, а по вязкости. Масляные дистилляты по мере возрастания вязкости делятся на соляровый, трансформаторный, веретенный, машинный, автоловый, цилиндровый. Остаток после разгонки мазута называется в зависимости от вязкости гудроном или полугудроном. В соответствии с элементным составом основная масса компонентов нефти это углеводороды (RH). В бензиновой фракции практически присутствуют только три класса углеводородов: алканы, циклоалканы и арены

16 16 ряда бензола. В керосиновой и газойлевой фракциях значительную долю составляют би- и трициклические углеводороды. Непредельных углеводородов с ненасыщенными связями в сырых нефтях нет. Помимо RH, в низкомолекулярной части нефти присутствуют гетероатомные органические соединения: кислородные (фенолы), сернистые (сульфиды, меркаптаны) и иногда азотистые (амины). Количество их невелико в низкокипящей части нефти, в основном они сосредоточены во фракциях, кипящих выше С (мазут). Для более точного разделения близкокипящих компонентов применяют перегонку с дефлегматором (ректификация). Сущность ректификации заключается в том, что жидкая и паровая фазы, стремясь к установлению теплового равновесия, обмениваются теплом. Пары жидкости из колбы поступают в дефлегматор-конденсатор, где конденсируются, и часть конденсата возвращается по дефлегматору вниз в колбу. Эта часть конденсата называется флегмой. В результате теплообмена нагретых паров с более холодной флегмой из жидкой фазы испаряются наиболее летучие компоненты, а из паров конденсируются наименее летучие компоненты. Таким образом, происходит многократное повторение процессов испарения и конденсации на поверхностных выступах дефлегматоров, что обеспечивает высокую степень разделения компонентов исходной смеси. К дистилляционным методам относится также азеотропная перегонка. Азеотропными называются смеси двух взаимнорастворимых жидкостей, температура кипения которых либо ниже температуры кипения низкокипящего компонента, либо выше температуры кипения высококипящего компонента. Сущность азеотропной перегонки заключается в следующем: к разделяемой смеси добавляют третий, растворимый в воде, неуглеводородный компонент. В присутствии этого вещества первоначальные компоненты азеотропа по-разному меняют свои упругости паров при нагревании, т.е. имеют разные температуры кипения. Если третий компонент по летучести приближается к разделяемой смеси, то он образует азеотроп с одним из компонентов смеси (азеотропная перегонка). Если летучесть третьего компонента мала, то он остаётся в жидкой фазе и удерживает одно из разделяемых веществ (экстрактивная перегонка). Молекулярная диффузия используется для разделения наиболее высококипящих веществ. Метод основан на различии молекулярных весов и зависит от относительной скорости испарения молекул. Адсорбционные методы. Сущность метода заключается в том, что отдельные компоненты смеси могут избирательно и последовательно сорбироваться на том или ином сорбенте (поглотителе) и таким путем отделяться от общей смеси. Затем эти компоненты десорбируются в неизменном состоянии в виде отдельных фракций и могут исследоваться раздельно. Десорбция происходит в порядке, обратном адсорбции. Хроматография. Адсорбционной хроматографией называется процесс разделения веществ на твердых адсорбентах по окраске. Существуют следующие разновидности методов хроматографического анализа: газо-

17 17 адсорбционный, жидкостно-адсорбционный, газожидкостный. Газоадсорбционная хроматография применяется для анализа газов и основана на адсорбции газовых компонентов смеси на твердых поглотителях. Жидкостная адсорбционная хроматография метод разделения жидких смесей с применением твердых адсорбентов (силикагеля). Газожидкостная хроматография отличается от адсорбционной хроматографии тем, что в качестве неподвижной фазы в разделительной колонне применяется не твердый адсорбент, а какая-либо нелетучая жидкость, нанесенная на инертный крупнопористый носитель, не обладающий адсорбционными свойствами. Абсорбция. Сущность метода заключается в объёмном поглощении газов или паров жидкостью (абсорбентом), приводящем к образованию раствора. Абсорбция используется для разделения газов. Для выделения компонента раствор поглотителя (абсорбента) с растворённым в нём газом направляют на десорбцию. Экстракцией называется процесс извлечения из исходного сырья отдельных компонентов путём обработки избирательно действующим растворителем (экстрагентом). В результате экстракции образуются две несмешивающиеся фазы: экстракт и рафинат. В составе экстракта находится растворитель и хорошо растворимые в нём компоненты сырья. Рафинат содержит оставшуюся часть сырья и растворённую в нём небольшую часть растворителя. Экстракт и рафинат должны легко отделяться друг от друга при отстаивании. Кристаллизация. Этот метод используется для отделения веществ с высокими температурами плавления, т.е. твердых углеводородов, растворимых в нефти. Кристаллизацию проводят путем вымораживания из растворов в подходящем растворителе. Растворитель должен являться одновременно и осадителем для отделяемых кристаллизацией веществ. Он должен растворять высокоплавкие компоненты значительно хуже, чем низкоплавкие. Контрольные вопросы 1 Методы разделения по температурам кипения. 2 Методы разделения по различию в растворимости. 3 Методы разделения по различию температур замерзания. 4 Методы разделения по различию адсорбционной способности. Список рекомендуемой литературы 1 Сыркин А.М., Мовсумзаде Э.М. Основы химии нефти и газа. - Уфа: Изд-во УГНТУ, C Рябов В.Д. Химия нефти и газа.- М.: ИД «ФОРУМ», C Виржичинская С.В., Дигуров Н.Г., Сиюшин С.А. Химия и Технология нефти и газа: учеб. пособие.- М.: ИД «ФОРУМ», C

18 18 Лекция 4. Алканы, содержащиеся в нефтях и газах Л.Н. Зорина Ключевые слова: алканы, парафины, церезины, галогенирование, нитрование, сульфохлорирование, окисление, дегидрирование, термическое расщепление, комплексообразование, клатратные соединения. Алканы углеводороды ряда C n H 2n+2. По имени первого члена этого ряда-метана (СH 4) алканы часто называют метановыми углеводородами. Присутствуют во всех нефтях и являются одной из составных ее частей. Распределяются они по фракциям неравномерно, концентрируясь главным образом в нефтяных газах и бензино-керосиновых фракциях, в масляных их содержание резко падает. Алканы обычно представлены в нефти во всех трех агрегатных состояниях: газообразном, жидком и твердом. Газообразные (C 1 -C 4: метан, этан, пропан, бутан, изобутан, а также 2,2- диметилпропан неопентан) образуют основную массу природного и попутного газа, сопровождающего нефть, находятся в нефти в растворенном состоянии. Жидкие алканы (C 5 - C 15) составляют основную массу бензиновой и керосиновой фракций нефти, представлены в нефтях углеводородами нормального строения и изомерами с разветвленной цепью. Твердые алканы (C 16 и выше) входят в состав нефтяного парафина и церезина. Содержание их в нефтях колеблется от десятых долей до 5%. Находятся в растворенном либо во взвешенном кристаллическом состоянии. На холоде растворимость их в нефти и нефтяных фракциях невелика, поэтому при подъеме на поверхность парафины отлагаются в скважинах и промысловых и нефтесборных трубопроводах, затрудняя эксплуатацию и транспорт нефти. Нефтяные парафины - смесь преимущественно алканов разной молекулярной массы, а основной компонент церезинов - нафтеновые углеводороды, содержащие в молекулах боковые цепи как нормального, так и изостроения. При одинаковой температуре плавления церезины отличаются от парафинов большими молекулярными массами, плотностью и вязкостью. Парафины легко кристаллизуются в виде пластинок, церезины- в виде мелких игл. Метановые углеводороды практически нерастворимы в воде, хорошо растворимы в эфире, ароматических углеводородах (бензоле, толуоле и т.п.), плотность их меньше плотности воды. Температуры кипения и плавления зависят от размеров молекул и возрастают в гомологическом ряду с увеличением молекулярной массы. Среди изомеров углеводороды нормального строения имеют наиболее высокие температуры кипения и плотности. Алканы обладают большой теплотворной способностью (ΔН сгор, МДж/кг для СН 4 56, С 4 Н 10 50, С 8 Н 18 48). Алканы относятся к наименее реакционноспособным органическим соединениям, однако они не являются химически инертными. При определенных условиях они вступают в реакции окисления,

19 19 галогенирования, нитрования, сульфохлорирования, дегидрирования. Химические превращения метановых углеводородов могут происходить либо за счет отрыва атомов водорода с последующим замещением их другими атомами или группами, либо за счет разрыва цепи углеродных атомов (реакции замещения и расщепления). Галогенирование одна из наиболее характерных реакций алканов. Свободный фтор взаимодействует с алканами со взрывом, хлор под влиянием света, нагревания (300 0 С) или в присутствии катализатора: CH 4 + Cl 2 Cl + HCl Cl + Cl 2 CH 2 Cl 2 + НCl хлористый метил CH 2 Cl 2 + Cl 2 CHCl 3 + НCl хлороформ хлористый метилен CHCl 3 + Cl 2 CCl 4 + HCl четыреххлористый углерод Хлорпроизводные низших аканов используют в качестве растворителей жиров, смол, каучуков и т.п. Галоидпроизводные алканов широко используются для алкилирования ароматических углеводородов (реакция Фриделя-Крафтса): + C 4 H 9 Cl AlCl 3 C 4 H 9 + HCl Хлорпроизводные алканов используют для получения спиртов: C 5 H 12 + Cl 2 C 5 H 11 Cl + HCl C 5 H 11 Cl + KOH C 5 H 11 OH + HCl амиловый спирт Нитрование. При действии разбавленной азотной кислотой на алканы атомы водорода замещаются на нитрогруппу (жидкофазное нитрование). В промышленности применяют парофазное нитрование (С): R H + HO - NO 2 R - NO 2 + H 2 O Сульфохлорирование и сульфоокисление Сульфохлорирование: R H + SO 2 + Cl 2 R - SO 2 Cl + HCl алкансульфохлорид Сульфоокисление: 2R - H + 2SO 2 + O 2 2R - SO 2 OH алкансульфокислота Реакции протекают на свету или в присутствии катализаторов. Образующиеся соединения используют в синтезе поверхностно-активных веществ (R - SO 2 - ONa). Окисление. Высокотемпературное окисление алканов в избытке кислорода приводит к их полному сгоранию до СО 2 и Н 2 О. Такое окисление происходит в двигателях всех типов. При низкотемпературном жидкофазном окислении кислородом в присутствии солей Mn образуется смесь предельных кислот. Этот процесс используют в промышленности для получения COOH из бутана и низкокипящих фракций нефти, а также при производстве жирных кислот С 12 С 18 окислением твердых алканов.

20 20 При газофазном окислении при низких температурах образуются спирты, альдегиды, кетоны и кислоты: [O] R - RCH 2 OH [O] O [O] O R - C R - C H O OH [O] R - CH 2 - R" R CH(OH)R" [O] R C R" При высоких температурах и в присутствии катализаторов алканы дегидрируются и подвергаются термическому расщеплению. Дегидрирование: C n H 2n+2 H 2 + C n H 2n Термическое расщепление: C n H 2n+2 C m H 2m+2 + C p H 2P (где n = m + p) Комплексообразование. Для метановых углеводородов характерно образование клатратных соединений (соединения включения), в которых «гостями» являются молекулы газов (CH 4, C 3 H 8 и др.), а «хозяевами» - молекулы воды, образующие кристаллический каркас. Молекулы газа размещены в полостях кристаллической решетки из молекул воды и удерживаются в них ван-дер-ваальсовыми силами. Число молекул воды, приходящееся на одну молекулу газа, колеблется от 6 до 17 (C 3 H 8 17 H 2 O). Алканы нормального строения, начиная с гексана, образуют комплексы с мочевиной (NH 2 - CO - NH 2). Молекулы мочевины за счет водородных связей образуют спиралевидные гексагональные каналы диаметром 0,49нм, в которые попадают молекулы н-алканов, диаметр которых 0,38 0,42 нм, что используют в промышленности при карбамидной депарафинизации масел. Контрольные вопросы 1 Общая характеристика алканов. 2 Физические свойства алканов. 3 Химические свойства алканов. Области применения производных алканов. Список рекомендуемой литературы 1 Сыркин А.М., Мовсумзаде Э.М. Основы химии нефти и газа. - Уфа: Изд-во УГНТУ, C Рябов В.Д. Химия нефти и газа.- М.: ИД «ФОРУМ», C Химия нефти и газа: учеб.пособие для вузов /под ред. ПроскуряковаА.Е. и Драбкина Е.Е.- СПб.: Химия, Гл.7.

21 21 Лекция 5. Циклоалканы нефти Л.Г.Сергеева Ключевые слова: нафтены, циклоалканы, циклопарафины, реакции замещения, присоединения, окисления. В нефти содержатся нафтеновые углеводороды циклического строения C n H 2n циклоалканы (циклопарафины). Марковников В.В. назвал их нафтенами. Например: CH 2 CH 2 CH 2 CH 2 H 2 СН2 С CH2 CH 2 CH- CH 2 CH 2 метилциклопентан циклогексан В дальнейшем под нафтенами начали понимать не только моноциклические, но и полициклические углеводороды нефтяного происхождения: H 2 C CH CH 2 H 2 C CH 2 CH 2 H 2 C CH CH 2 бицикло - нонан По общему содержанию нафтены во многих нефтях преобладают над остальными классами углеводородов. В различных нефтях от 25 до 75% циклопарафинов. Нафтены входят в состав всех нефтей и присутствуют во всех фракциях. Их содержание растет по мере утяжеления фракций. Простейшие циклоалканы - циклопропан, циклобутан, и их гомологи - в нефтях не обнаружены. Моноциклические нафтены ряда C n H 2n широко представлены в нефтях циклопентановыми и циклогексановыми производными. Строение их разнообразно, так как для них возможно 4 вида изомеров: изомерия кольца, изомерия местоположения боковых цепей, изомерия строения боковых цепей и стереоизомерия (цис- и транс-): CH C 2 H 5 CH C 2 H 5 CH 2 CH C 2 H 5 CH 2 CH 2 CH 2 CH 2 1,2-диэтилциклопентан CH 2 CH C 2 H 5 1,3-диэтилциклопентан H H H цис-1,4-диметилциклогексан H транс-1,4-диметилциклогексан В настоящее время в бензиновых фракциях различных нефтей обнаружено более 50 индивидуальных представителей этого класса углеводородов. Таким образом, в бензинах и частично в керосинах присутствуют, в основном, моноциклические нафтены рядов циклопентана и циклогексана с короткими

22 22 боковыми цепями. В среднем циклопентановое кольцо преобладает над циклогексановым. Основная масса полициклических нафтенов имеет конденсированное строение. Количество углеродных атомов в боковых цепях нафтенов может быть разнообразным - от 3 до 10 в средних фракциях и от 20 до 28 в высококипящих фракциях нефти. Высокомолекулярные циклические углеводороды с большим числом атомов углерода в боковой цепи правильнее относить не к нафтенам, а к парафино-циклопарафиновым углеводородам. Полициклические нафтены с длинными парафиновыми цепями имеют высокую температуру плавления и поэтому попадают в состав церезинов. Номенклатура. Название циклоалканов образуются присоединением приставки цикло- к названию соответствующего ациклического углеводорода с тем же числом атомов углерода: CH 2 CH 2 CH 2 H 2 C CH 2 H 2 C CH 2 CH 2 H 2 C CH H 2 2 C CH 2 циклопропан циклобутан циклопентен Заместители и положение двойных связей обозначают цифрами так, чтобы получилась минимальная комбинация цифр: CH 2 H 2 C CH 2 H 2 C CH C 2 H этилциклопентен Для удобства кольца обозначают геометрическими фигурами: треугольник, квадрат и т.д. Если в молекуле есть изомеры циклов, название можно получить исходя из номенклатуры алифатических углеводородов СН 2 дициклопропилметан Физические свойства. Температура кипения циклопарафинов больше температуры кипения парафинов. Циклоалканы во многом определяют состав нефти и свойства нефтепродуктов, однако нафтены не выделяют из нефти, а получают синтетически, например по реакции Вюрца, т.е. дегалогенированием дигалогенпроизводных углеводородов: CI CH 2 Zn CH ZnCl 2 CI CH 2 C 1,3 - дихлорпропан циклопропан Химические свойства. Циклопентан и циклогексан в химическом отношении ведут себя аналогично пентану и гексану. Циклопропан и циклобутан более

23 23 активны, они легко вступают в реакции присоединения с раскрытием кольца и образованием ациклических (линейных) продуктов: H 2 Ni, 80 0 C Br 2 CCl 4 HJ CH 2 H CH 2 Br CH 2 H CH 2 CH 2 H CH 2 CH 2 Br CH 2 CH 2 Циклогексан при нагревании на тех же катализаторах, но без водорода дегидрируется в ароматический углеводород - бензол (реакция Зелинского): J -3H 2 Pd, Pb, C Это одна из наиболее важных реакций, протекающих в промышленном процессе ароматизации бензиновых фракций. Для циклоалканов характерны также реакции свободнорадикального замещения в цикле: Br + Br C h + Cl C бромциклопентан + HBr Cl + HCl хлорциклогексан При действии сильных окислителей циклопарафины образуют двухосновные карбоновые кислоты с тем же числом атомов углерода: [O] HOOC(CH 2) 4 COOH адипиновая кислота Продукты окисления используются в производстве синтетических волокон, пластификаторов пластмасс. Контрольные вопросы 1 Строение циклоалканов. Номенклатура. 2 Физические свойства. Содержание в нефтях. 3 Химические свойства. Список рекомендуемой литературы 1 Сыркин А.М., Мовсумзаде Э.М. Основы химии нефти и газа. - Уфа: Изд-во УГНТУ, C Рябов В.Д. Химия нефти и газа.- М.: ИД «ФОРУМ», C Виржичинская С.В., Дигуров Н.Г., Сиюшин С.А. Химия и технология нефти и газа: учеб. пособие.- М.: ИД «ФОРУМ», C

24 24 Л.З.Рольник Лекция 6. Ароматические углеводороды, содержащиеся в нефтях Ключевые слова: моноциклические арены, полициклические конденсированные ароматические углеводороды, электрофильное замещение, присоединение, окисление, органический синтез Основная масса моноциклических аренов представлена в нефти полиметилзамещенными бензола. Общее содержание моноциклических аренов в нефтях: во фракции до С %; во фракции С % (наряду с производными бензола, в керосиногазойлевой фракции присутствует нафталин и его гомологи, то есть бициклические конденсированные ароматические углеводороды); во фракции > С небольшое количество (в основном полициклические ароматические углеводороды с 3,4,5-ю конденсированными бензольными кольцами). Строение аренов, присутствующих во фракциях нефти, следующее: Общая формула: CnH 2n-6 CnH 2n-12 CnH 2n-18 R R R производные бензола R R производные нафталина R производные антрацена и фенантрена R 2 Физические свойства По своему агрегатному состоянию моноциклические арены - жидкости с различными температурами кипения. Конденсированные полициклические арены - твердые вещества с различными температурами плавления. Плотности и показатели преломления аренов выше, чем у соответствующих алканов и циклоалканов. Химические свойства I Реакции электрофильного замещения в кольце. Протекают сравнительно легко по следующей схеме:

25 25 Cl 2 -HCl HNO 3,H 2 SO 4 (k) -H 2 O R Cl R R Cl + (галогенирование) R NO 2 + (нитрование) R H 2 SO 4 (k) -H 2 O NO 2 R + R SO 3 H (сульфирование) R"Cl AlCl 3 SO 3 H R + R R" (алкилирование) R"CH=CH 2 Al Cl 3 R" R + R CH R" (алкилирование) CH R" где R=, R"-Alk Существуют определенные правила ориентации в реакциях электрофильного замещения в ароматическом ряду: место вступления второго заместителя в бензольное кольцо определяется природой уже имеющегося заместителя. Заместители бывают двух типов: 1) электронодонорные; 2) электроноакцепторные. К электронодонорным заместителям относятся: -, -OH,-NH 2,-Cl(-F,-Br, -I). Они способствуют электрофильному замещению в орто- и пара- положениях бензольного кольца и называются заместителями I рода: OH К электроноакцепторным заместителям относятся: -NO 2, -SO 3 H, -COH, -COOH. Они способствуют электрофильному замещению в метаположение бензольного кольца и называются заместителями II рода: NO 2

26 26 II Реакции присоединения протекают трудно в жестких условиях по следующей схеме: R R H 2,давление Cl 2,h R Cl III Реакции окисления. Незамещенные бензолы окисляются трудно в жестких условиях. Алкилбензолы окисляются легко, по α-звену боковой цепи, образуя соответствующие карбоновые кислоты по схеме: [O] Cl Cl Cl COOH Cl Cl [O] COOH + СО 2 C 2 H 5 COOH Применение аренов в органическом синтезе Моноциклические арены, а также нафталин и его производные - ценное химическое сырье для нефтехимического и органического синтеза. Из них производят синтетические каучуки, пластмассы, синтетические волокна, взрывчатые, анилино-красочные и фармацевтические вещества. Контрольные вопросы 1 Распределение ароматических углеводородов по фракциям нефти. 2 Основные представители аренов в нефтях. 3 Физические и химические свойства аренов. Список рекомендуемой литературы 1 Сыркин А.М., Мовсумзаде Э.М. Основы химии нефти и газа. - Уфа: Изд-во УГНТУ, C Рябов В.Д. Химия нефти и газа.- М.: ИД «ФОРУМ», C Виржичинская С.В., Дигуров Н.Г., Сиюшин С.А. Химия и технология нефти и газа: учеб. пособие.- М.: ИД «ФОРУМ», C

27 27 Лекция 7. О.Ф. Булатова Алкены, алкадиены и алкины, образующиеся при переработке нефти Ключевые слова: ненасыщенные углеводороды, алкены, диены, алкины, крекинг, реакция полимеризации, полимеры, бромное число. Ранее считалось, что алкены либо не содержатся в нефтях, либо содержатся в незначительных количествах. В конце 80-х годов было показано, что в ряде нефтей Восточной Сибири, Татарии и других районов России содержание алкенов может доходить до % от массы нефти. Ненасыщенные углеводороды (алкены и диолефины) содержатся в продуктах термической и термокаталитической переработки нефтяных фракций (в газах и жидких продуктах термического и каталитического крекинга, пиролиза, коксования и т.д.). Алкены - ненасыщенные углеводороды, содержащие двойную связь С=С. Раньше эти соединения называли олефинами. Общая формула алкенов C n H 2n. Простейшим представителем алкенов является этилен С 2 Н 4. Ненасыщенные циклические углеводороды с одной двойной связью называются циклоалкенами или циклоолефинами (общая формула C n H 2n-2). Диеновые углеводороды (диолефины) имеют две двойные связи (общая формула C n H 2n-2). Алкины - ненасыщенные углеводороды, содержащие в молекуле тройную связь С С. Простейшим представителем алкинов является ацетилен С 2 Н 2, поэтому их часто называют ацетиленовыми углеводородами. Общая формула алкинов С n Н 2n-2. Наименование всех алкенов образуется из названий соответствующего алкана с заменой окончания -ан на -ен. Главной считается цепь, содержащая двойную связь. Положение двойной связи обозначается цифрой, соответствующей углеводородному атому, от которого начинается двойная связь. Нумерацию проводят так, чтобы атом углерода, от которого начинается двойная связь, получил наименьший номер. При наличии двух или трёх двойных связей в молекуле углеводорода в окончании указывается -диен или -триен с указанием положения каждой из этих связей. В названии алкинов окончание -ан заменяется на -ин. Для первого члена гомологического ряда сохраняется тривиальное название ацетилен. Иногда некоторые алкины называют как производные ацетилена: метилацетилен, диметилацетилен. При прочих равных условиях по номенклатуре IUPAC наименьший номер дают атомам при двойной, а не при тройной связи. Физические свойства. Алкены С 2 -С 4 при нормальных условиях - газы, алкены С 5 -С 17 - жидкости, а следующие - твёрдые вещества. Плотность алкенов несколько выше, чем соответствующих алканов. Алкены в воде растворяются мало, но лучше, чем алканы. Хорошо растворяются в органических растворителях.


Способы классификации нефтей. Особенности состава и свойств нефтей основных нефтегазоносных провинций ЛЕКЦИЯ 4 Нефть - это сложная смесь жидких органических веществ, в которой растворены различные твердые

Источники углеводородов Природный газ Попутный нефтяной газ Нефть Каменный уголь } Состав природного газа: СН4 С2Н6 С4Н10 С5Н12 N2 и другие газы 80-97% 0,5-4,0% 0,1-1,0% 0-1,0% 2 13% Преимущества перед

СОДЕРЖАНИЕ ПРЕДИСЛОВИЕ............................................. 3 ВВОДНАЯ ЧАСТЬ............................................ 6 Краткая характеристика компонентов нефти........... 9 Химическая классификация

Лекция 1 Элементный состав нефтей и природных газов Несмотря на то, что нефть залегает в различных геологических условиях, элементный состав её колеблется в узких пределах. Он характеризуется обязательным

Задания А27 по химии 1. Полимер, имеющий формулу получают из 1) толуола 2) фенола 3) пропилбензола 4) стирола Стирол (винилбензол или фенилэтен) - это производное бензола, у которого есть непредельный

Количественные характеристики нефтей ЛЕКЦИЯ 1 Нефть имеет сложный химический состав и представляет собой смесь углеводородных и других соединений. Основные составляющие нефти метановые, нафтеновые и ароматические

Лекция 6 Алканы нефти Алканы занимают исключительно важное место среди углеводородов нефти. Так, природные газы представлены почти исключительно алканами. Общее содержание алканов в нефтях составляет 40-50%

Лекция 6 Химические процессы переработки нефти В результате фракционной разгонки нефти из неё удаётся выделить 5-25 % бензина и до 20 % керосина. Сравнительно малый выход этих продуктов и постоянно возрастающая

Тема 4.5. Характерные химические свойства ароматических углеводородов: бензола и толуола План 4.5.1. Характерные химические свойства бензола. 4.5.2. Характерные химические свойства толуола. Методические

2 1. Химия природных энергоносителей Требования, предъявляемые к топливам. Виды топлив. Агрегатное состояние топлив. Понятие условного топлива. Залегание нефти в земных недрах. Извлечение нефти. Подготовка

Химизм процесса каталитического риформинга Каталитический риформинг сложный процесс, включающий разнообразные превращения углеводородов. Прямогонные бензиновые фракции, служащие сырьем каталитического

Алканы Учитель химии МОУ лицея 6 Дробот Светлана Сергеевна Определение Оглавление Гомологического ряд метана Строение молекулы метана Номенклатура Изомерия Получение Физические свойства Химические свойства

Лекция 10 Арены Химические свойства и использование Реакции присоединения Арены вступают в реакции присоединения с большим трудом Для этого требуются высокие температуры, ультрафиолетовое облучение и катализаторы

Лекция 11 Непредельные углеводороды Непредельные или ненасыщенные углеводороды это углеводороды, в молекуле которых имеются углеводородные атомы, затрачивающие на связь с соседними атомами углерода более

ВНМ-15-01,05,07 Защита лабораторных работ 1) Контрольные вопросы к лабораторной работе 1 «Первичная перегонка нефти» 1. Дайте определение понятию «природный газ». Охарактеризуйте состав природного газа.

Задания В6 по химии 1. Взаимодействие 2-метилпропана и брома при комнатной температуре на свету 1) относится к реакциям замещения 2) протекает по радикальному механизму 3) приводит к преимущественному

ПРОГРАММА ПО ХИМИИ ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА. ОСНОВНЫЕ ЗАКОНЫ ХИМИИ Теория строения вещества Атом. Молекула. Химический элемент. Вещество. Молекулярные и структурные формулы. Состав атомных ядер. Строение

1. Обратимость химических реакций. Химическое равновесие. Смещение химического равновесия Химические реакции бывают обратимыми и необратимыми. Обратимая химическая реакция это реакция, которая протекает

ОРГАНИЧЕСКАЯ ХИМИЯ ТЕМА 2. ОСНОВНЫЕ КЛАССЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ 2.2. НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ 2.2.1. АЛКЕНЫ НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ Углеводороды с открытой цепью, в молекулах

Вариант 1 1. Какое свойство указывает на принадлежность углеводорода к предельным соединениям? 1) Углеводород не вступает в реакции присоединения. 2) Молекула углеводорода содержит только s-связи. 3) Углеводород

Четверть 1 Органические вещества это вещества, содержащие углерод. Раздел химии, изучающий соединения углерода, называется органической химией. Вещества, имеющие одинаковый состав и одинаковую молекулярную

Циклоалканы. Номенклатура Строение Изомерия Физические свойства Химические свойств Получение Углеводороды - органические соединения, в состав которых входят только два элемента: углерод и водород. Углеводороды

Задание олимпиады «Линия знаний: Нефть и газ» Инструкция по выполнению задания: I. Внимательно прочтите инструкцию к разделу II. Внимательно прочтите вопрос III. Вариант правильного ответа (только цифры)

Лекция 4 Смолисто-асфальтовые вещества Смолисто-асфальтовые вещества - сложная смесь наиболее высокомолекулярных компонентов нефти, содержание которых достигает 10-50 % масс. В высококонцентрированном

ЕСТЕСТВОЗНАНИЕ. ХИМИЯ. ОРГАНИЧЕСКАЯ ХИМИЯ. Углеводороды Углеводороды Углеводороды это органические соединения, которые в своем составе имеют водород и углерод. Общая формула СхНу Существует определенная

Результаты обучения (освоенные умения, усвоенные знания) ПК ОК Наименование темы 1 2 -понятия органическая химия; - природные, искусственные и синтетические органические соединения; -основные положения

Нефть Свойства и состав нефти Переработка нефти Химический Эксперимент Проверочный тест Состав нефти В состав нефти входит около 1000 веществ 80-90% - углеводороды: Алканы (составляющих половину всех углеводородов

Задание класс Вариант Концентрированную серную кислоту добавили к кристаллической поваренной соли, в результате чего образовалась кислая соль и выделился газ. Полученный газ ввели в реакцию с раствором

Номенклатура Строение Изомерия Физические свойства Химические свойств Получение Углеводороды - органические соединения, в состав которых входят только два элемента: углерод и водород. Углеводороды содержатся

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тюменский государственный нефтегазовый университет»

Непредельные углеводороды Двойная связь является сочетанием σ- и π-связей (хотя она изображается двумя одинаковыми черточками, всегда следует учитывать их неравноценность). σ-связь возникает при осевом

Тюмень 203 2 . Цели и задачи дисциплины.. Цели дисциплины: 3 Дисциплина Нефтепродукты и продукты нефтехимии относится к ЕН.Р.00 национально-региональному (вузовскому) компоненту и имеет своей целью: -

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ Бензол С6Н6 родоначальник ароматических углеводородов. Каждый из шести атомов углерода в его молекуле находится в состоянии sp 2 -гибридизации и связан с двумя соседними атомами

1 Алканы: n 2n+2 Способы получения алканов 1. Природные источники природный газ, уголь, нефть. Метан образуется при действии анаэробных (развивающихся без доступа воздуха) микробов на растительные органические

Календарный план лекций по органической химии для студентов гр. ХЭ-15-08 (группа экологического профиля, направление 08.03.02) в осеннем семестре 2016-2017 учебного года (ч.1 Химия углеводородов.). Объем

Билет 1. 1. Предмет органической химии. Сигма-связь, пи-связь. Первое, второе и третье валентные состояния атома углерода (виды гибридизации) Билет 2. 1. Теория строения органических веществ Бутлерова

1 Алкены (C n H 2n) Физические свойства алкенов Первые три члена газы (это гомолги этилена С 2 С 4) этилен, пропилен, бутилен. Начиная с пектена и по С 17 жидкости, выше твердые вещества. Гомологи нормального

Лекция 4. Основы органической химии Лектор: асс. каф. ОХХТ к.х.н. Абрамова Полина Владимировна еmail: [email protected] ПЛАН ЛЕКЦИИ I. Предмет органическая химия. II. Теория химического строения органических

Примерное тематическое планирование Базовый уровень образования 10 класс (2 ч в неделю, всего 70 ч; из них) урока Дата Название темы Название урока Характеристика основных видов деятельности ученика (на

Программы испытаний по химии Предмет и задачи химии. Место химии среди естественных наук. Атомно-молекулярное учение. Молекулы. Атомы. Постоянство состава вещества. относительная атомная и относительная

Спирты - органические соединения, в состав молекул которых входит одна или несколько гидроксильных групп, соединенных с углеводородным радикалом. Классификация спиртов 1. По числу гидроксильных групп в

2 3 1. Цели освоения дисциплины Целями освоения дисциплины (модуля) являются: фундаментальная подготовка студентов в области химии нефти и газа, которая заключается в формировании у студентов теоретических

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 37 с углублѐнным изучением отдельных предметов» РАССМОТРЕНО И ПРИНЯТО на заседании МО учителей Протокол 2 от «02»

Лабораторная работа 4 АРЕНЫ Опыт 1. Получение бензола из бензойной кислоты и изучение его свойств 1. Напишите уравнение реакции получения бензола. 2. Какое агрегатное состояние имеет бензол? Сделайте вывод

Билет 1 1. Периодический закон и периодическая система химических элементов Д.И.Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки. 2. Предельные углеводороды,

Рабочая программа Форма Ф СО ПГУ 7.18.2/06 Министерство образования и науки Республики Казахстан Павлодарский государственный университет им. С. Торайгырова Кафедра химии и химических технологий РАБОЧАЯ

ОРГАНИЧЕСКАЯ ХИМИЯ ТЕМА 4. КИСЛОРОДОСОДЕРЖАЩИЕ СОЕДИНЕНИЯ 4.1. СПИРТЫ И ФЕНОЛЫ 4.1.2. ФЕНОЛЫ ФЕНОЛЫ органические соединения ароматического ряда, в молекулах которых гидроксильные группы связаны с атомами

Экзаменационные вопросы для докторантов по специальности 6D072100 «Химическая технология органических веществ» 1. Сдвиг равновесия. Принцип Ле-Шателье. 2. Фазовое состояние реагентов и продуктов реакции

10. Химические свойства и способы получения углеводородов Алканы C n H 2n+2 В молекулах алканов атомы углерода находятся в sp 3 -гибридном состоянии и образуют только одинарные (простые) σ-связи. Химические

"Непредельные углеводороды" Непредельные углеводороды - это углеводороды, содержащие кратные связи в углеродном скелете молекулы. Кратными называются двойные и тройные связи. К непредельным углеводородам

2. АЛКЕНЫ. ДИЕНОВЫЕ УГЛЕВОДОРОДЫ 2.1. Алкены Физические свойства. Первые три алкена газы, от пентена до его гомолога, содержащего семнадцать атомов углерода, жидкости, далее твердые вещества. Алкены плохо

Минимум по химии для учащихся 10-х классов. Учебник: Габриелян О.С. Химия.10 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. Виды и формы контроля: 1) предъявление выполненных дома

Дегтярёва М.О. ЛНИП C n H 2n Алкены (этиленовые углеводороды) - непредельные углеводороды, молекулы которых содержат двойную связь SP 2 - гибридизация + S 2 P SP 2 P P Образование связей при SP 2 - гибридизации

10 класс ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Данная рабочая программа учебного предмета «Химия» для обучающихся 10 класса общеобразовательного учреждения разработана на основе авторской программы по химии для общеобразовательных

Рабочая программа по химии 10 «а» класс (базовый уровень) Рабочая программа разработана на основе авторской программы О.С. Габриеляна, соответствующей Федеральному компоненту государственного стандарта

Минобрнауки России

Государственное образовательное учреждение Высшего профессионального образования «Санкт-Петербургский государственный инженерно-экономический университет»

Кафедра экономики и менеджмента в нефтегазохимическом комплексе

В.В. Васильев, Е.В. Саламатова

ОСНОВЫ ХИМИИ НЕФТИ

Конспект лекций

Специальность 080502(н) - Экономика и управление на предприятии

нефтяной и газовой промышленности

Санкт-Петербург

Допущено редакционно-издательским советом СПбГИЭУ

в качестве методического издания

Составители д-р техн. наук, доц. В.В. Васильев

канд. техн. наук, доц. Е.В. Саламатова

Рецензент канд. техн. наук, проф. Е.Е. Никитин

Подготовлено на кафедре экономики и менеджмента в нефтегазохимическом комплексе

Одобрено научно-методическим советом специальностей 060502(5), 080502(н) - Экономика и управление на предприятии нефтегазохимического комплекса

© СПбГИЭУ, 2011

Введение…………………………………………………………

Тема 1. Общие свойства и классификация нефтей

Тема 2. Происхождение нефти

Тема 3. Основные физико-химические свойства и техни-

ческие характеристики нефти и нефтепродуктов

Тема 4. Нефть как многокомпонентная система

Тема 5. Алканы нефти

Тема 6. Циклоалканы нефти

Тема 7. Арены и гибридные углеводороды нефти

Тема 8 Гетероатомные соединенияи минеральные компо-

ненты нефти

Примеры тестовых заданий

Заключение……………………………………………................

Список литературы……………………………………………...

Терминологический словарь……………………………………

Приложение 1. Извлечение из рабочей программы....................

ВВЕДЕНИЕ

В настоящее время происходит интенсивное развитие нефтехимической и нефтеперерабатывающей промышленности на основе последних достижений науки и техники с использованием новых аналитических приборов и методик исследования.

Предметом изучения дисциплины является: основы химии нефти, которые отражают современное состояние науки по изучению химического состава нефтей, достижения в нефтеперерабатывающей и нефтехимической промышленности.

Объект изучения являются предприятия нефтяной промышленности, входящие в подотрасли основной химии, нефтегазодобывающей и нефтехимической и др.

Цель изучения дисциплины состоит в овладении общими знаниями о природе, составе и типах нефтей, получаемых из нее нефтепродуктов; методов исследования нефтяных фракций и нефтяных остатков.

Исходя из общей направленности дисциплины, рассматриваются вопросы химических свойств основных классов органических соединений присутствующих в нефти.

Особое внимание уделяется изучению технологических процессов подготовки нефти как сырья для нефтехимических и нефтеперерабатывающих предприятий.

Задачи изучения дисциплины:

подготовка студента к выполнению курсового и дипломного проектов;

формирование у студентов знаний по основам химии

формирование знаний по методам исследования состава и оценки качества нефти;

овладение основными техническими методиками анализа

Дисциплина «Основы химии нефти» является основной в инженерно-технологической подготовке экономистов-менедже- ров и базируется на таких дисциплинах, предусмотренных рабочим учебным планом по специальности 080502(н), как: «Теоретические основы прогрессивных технологий», «Математика»,

«Геология, поиски и разведка нефтяных и газовых месторождений».

Тематическое наполнение дисциплины соответствует логической схеме последовательного изучения науки, начиная с изучения основ состава и свойств нефти и завершая изучением технологии подготовки нефти – как сырья для нефтехимических нефтеперерабатывающих производств.

При изучении дисциплины студент должен:

- овладеть научными основами нефтехимии, необходимыми для правильного понимания влияния групп соединений на качество нефти, ознакомиться с перспективами развития нефтехимии, систематизировать и сформировать понятие о производстве нефтепродуктов, приобрести навыки анализа нефти путем выбора оптимальных условий с применением современной аналитической техники;

- знать основные химические и физико-химические методы анализа нефти и нефтепродуктов по методикам ГОСТ-а

- уметь производить необходимые аналитические и техникохимические оценки качества различных видов нефтей в соответствии с требованиями ГОСТ.

ТЕМА 1. ОБЩИЕ СВОЙСТВА И КЛАССИФИКАЦИЯ НЕФТЕЙ

Изучив представленный материал, студент, будет знать основные сырьевые источники нефтехимической и нефтеперерабатывающей промышленности. Объем имеющихся и предполагаемых сырьевых ресурсов, основные месторождения нефти, газа твердых горючих ископаемых. Кроме того, студенты получат знания об основах химической переработке природных газов,

жидкого топлива.

Нефть представляет собой маслянистую жидкость от светло – желтого до коричневого или черного цвета, обычно легко текучую, реже – малоподвижную. Углерод (82-87% масс.) и водород (11-15% масс.) являются основными химическими элементами, составляющими нефть, кроме того в ней присутствуют сера, азот, кислород и металлы в виде сернистых, азотистых, кислородсодержащих и металлорганических соединений соответственно.

Таким образом, нефть в основном состоит из углеводородов с определенным содержанием гетероатомных и смолистоасфальтеновых соединений, микропримесей металлов и других элементов.

Основные нефтегазоносные районы. Мировые извлекае-

мые запасы природного газа оцениваются в 155 трлн.м3 . Россия по разведанным запасам природного газа (31%) занимает первое место в мире. Одна треть мирового запаса природного газа приходится на страны Ближнего Востока. Основными месторождениями природного газа в России являются (трлн. м3 ): Уренгойское(4.00), Ямбургское(3.78), Штокмановское(3.00), Заполярное(2.6), Оренбургское(1.78), Медвежье(1.55) и др. В последние годы в России добывается более 604 млрд. м3 газа в год.

Природный газ, содержит около 95% метана и около 2-5% газового конденсата («легкой нефти»).

Мировые извлекаемые запасы нефти оцениваются в 141.3 млрд.т. Из них около 66.4 % расположено в странах Ближнего и Среднего Востока. Второе место в мире по запасам нефти занимает Американский континент – 14.5%. В России сосредоточено около 4.7% мировых запасов нефти. В последние годы в России добывается около 500 млн. т. нефти в год.

Важнейшие месторождения нефти России находятся в Западной и Восточной Сибири, в Республике Коми, Татарстане и Башкортостане, в Среднем и Нижнем Поволжье и на о. Сахалин.

В Саудовской Аравии сосредоточено более четверти мировых запасов нефти, а каждая из таких арабских стран как Ирак, Иран, Кувейт и Абу-Даби владеет почти десятой частью ее запасов.

На американский континенте наиболее крупными запасами нефти обладают Венесуэла, Мексика, США и Бразилия.

Извлекаемые запасы нефти в Африке составляют около 7% (Ливия, Нигерия, Алжир).

Считается, что Западная Европа бедна нефтью и газом. Однако в последнее время были открыты крупные месторождения в акватории Северного моря, главным образом в британских и норвежских территориях. Восточно-Европейские страны, Россия и страны бывшего СССР владеют около 6% извлекаемых запасов нефти.

В Азиатско-Тихоокеанском регионе промышленными запасами нефти обладают Китай, Индонезия, Индия, Малайзия и Австралия.

В мире насчитывается десятки тысяч нефтяных месторождений, которые имеют промышленное значение, 29 из них являются уникальными сверхгигантами. Большинство уникальных и гигантских месторождений нефти находятся в странах Среднего Востока и Латинской Америки.

Этапы развития нефтеперерабатывающей промышлен-

ности. Первый в мире нефтеперегонный завод с кубами периодического типа был построен крепостными крестьянами – братьями Дубиниными в 1823г. вблизи города Моздока. Головной продукт перегонки – бензин и тяжелый остаток – мазут, не находившие применение, сжигали. В 1869г. в Баку было 23 нефтеперегонных завода, а в 1873г. – 80 заводов, способных получать 16350 т керосина в год.

Д.И. Менделеев разработал метод промышленного производства смазочных масел из мазута перегонкой в вакууме, который был внедрен в 1876 г. Нефтяные масла стали вытеснять растительные, а также животные жиры из всех отраслей техники. Русские минеральные масла широко экспортировались за границу и расценивались как самые высококачественные.

А.А. Тавризовым был разработан метод непрерывной перегонки нефти в кубовых батареях и в 1883 г. осуществлен на заводе братьев Нобель в Баку.

Изобретение двигателя внутреннего сгорания способствовало новому качественному скачку в развитии нефтепереработки, т.к. бензин, который ранее не находил применение, стал одним из важнейших продуктов, производство которого требовало роста добычи нефти и совершенствования технологии ее переработки.

К 1917 г. нефтеперерабатывающие предприятия были сосредоточены в основном на Кавказе. После восстановительного периода (1928г.), вызванного последствиями гражданской войны, в СССР были открыты новые месторождения и началось интенсивное строительство новых нефтеперерабатывающих заводов (Уфа, Саратов, Одесса, Хабаровск и т.д.).

В годы Великой Отечественной войны многие НПЗ были эвакуированы в восточные районы страны. Большую роль в обес-

печении фронта и тыла страны топливом для самолетов, танков и других боевых и гражданских машин сыграли бакинские, грозненские и восточные НПЗ.

В послевоенные годы нефтеперерабатывающая промышленность развивалась быстрыми темпами, непрерывно повышались технический уровень и объемы производства. Нефтепереработка страны получила дальнейшее значительное развитие строительством новых мощных НПЗ и нефтехимических комбинатов (Салават, Волгоград, Ангарск, Кириши, Нижнекамск и

Структура топливно-энергетического комплекса. Долгое время нефть, газ, твердые горючие ископаемые используют как энергетическое топливо, а с XX в. к источникам энергоресурсов добавились гидроресурсы и ядерное топливо. Совокупность от-

раслей промышленности, занятых добычей, транспортировкой и переработкой различных видов горючих ископаемых, а также выработкой, преобразованием и распределением различных видов

энергии называют топливно-энергетическим комплексом (ТЭК).

На сегодняшний день нефтегазовый комплекс (НГК) является наиболее значимой частью ТЭК. Отрасли НГК приведены на рис.1.

Отрасли нефтегазового комплекса

Нефтегазодобывающая

Нефтегазоперерабатывающая

Нефтегазохимическая

Транспортная (нефти, газа, продуктов их переработки)

трубопроводный

Железнодорожный

морской и т.д.

Снабжения нефтепродуктами

Рис.1. Отрасли нефтегазового комплекса

ТЭК является основой современной мировой экономики. Уровень развития ТЭК отражает социальный и научнотехнический прогресс в стране.

Химическая и технологическая классификация нефтей.

К настоящему времени опубликовано большое количество работ, характеризующих составы нефтей различных месторождений. Эти работы, в основном, посвящены геохимическим исследованиям, которые положены в основу химической классификации нефтей. Разработано несколько вариантов химической классификации. Так в качестве основания классификации нефтей использовали: Горное Бюро США - плотность, ГрозНИИ - преимущественное содержание одного или нескольких классов органических соединений, С. С. Наметкин и А. Ф. Добрянский - концентрацию алканов, К. А. Конторович - содержание алканов и цикланов, а Ал. А. Петров - данные хроматографического анализа фракций нефти 200-430) 0 С (концентрации нормальных, разветвленных алканов, циклоалканов и аренов). Классификация, предложенная Ал. А. Петровым более полно отражает химический состав нефтей. Используемые химические классификации вполне приемлемы для оценки качества нефтей, как сырья для промышленной переработки.

Химическую типизацию нефтей по методу Ал. А. Петрова осуществляют на основании группового состава. В табл. 1. приведены критерии отнесения нефтей к соответствующим типам. Содержание алканов меняется от 6 до 60%, поэтому они определяют разнообразие нефтей.

Таблица 1

Углеводородный состав нефтей различных химических

типов фракции 200 – 430 0 С, (%)

Углеводороды

Тип нефти

Н- алканы

Изоалканы

0,05-6,0 (0,5-3)

Циклоалканы

Ароматические

Примечание : в скобках приведены наиболее часто встречающиеся данные.

Нефти типа А 1 (глубина залегания обычно более 1500 м) относят к нефтям парафинового и нафтено-парафинового основания. Для них характерно высокое содержание бензиновых фрак-

ций и низкая смолистость. В насыщенных соединениях содержится до 40-70% алканов.

нефтях всегда выше концентрации нормальных алканов. Соот-

ношение изо- и нормальных алканов составляет 1:6.

В западносибирском нефтегазоносном бассейне такие месторождения как Котум-Тепе, Дагаджинское, Русское, Новопортовское, Тайтымское, Малоичское, Самотлорское, Нижн. Табачанское, Наталинское, Верх. Тарское содержат нефти типа А1 .

В зависимости от распределения парафинов нефти А 1 делят-

ся на три группы. Для нефтей первой группы ∑nC13 -nC15 /∑ nС25 - nС27 составляет 0,5-1,2, а для второй от 1,2 до 3 и для третьей от 3

Нефть типа А 2 (найдена в кайнозойских и мезозойских отложениях на глубине 1500-2000 м). Ее относят к нафтенопарафиновым и парафино-нафтеновым нефтям. У этого типа нефтей ниже содержание алканов. При этом наблюдается существенное преобладание изопреноидных алканов над алканами линейного строения. Нефти типа А2 значительно реже встречаются чем А1 . В западной Сибири некоторые пласты Самотлорского месторождения содержат нефть типа А2 .

Нефть типа Б 2 (глубина залегания 1000-1500 м в кайнозойских отложениях) относят к нефтям парафино-нафтенового наф- тено-парафинового основания. В насыщенных углеводородах содержание концентрация циклоалканов достигает 60-75%. Алкановые углеводороды представлены в основном соединениями с разветвленной структурой. Важно отметить, что на хроматограммах нефтей типа Б2 пики нормальных и монозамещенных алканов не проявляются.

Нефти типа Б 1 (глубина залегания 500-1000 м) распространены в кайнозойских отложениях многих нефтегазоносных бассейнов. Этот тип нефтей встречается в районе Западной Сибири (месторождение Грязевая сопка, Сураханы, Балаханы, Русское). В нефтях типа Б1 практически полностью отсутствуют нормальные и изопреноидные алканы. Содержание разветвленных алканов не превышает 10%. В нафтенах преобладают бицик-лические производные.

Нефть результат литогенеза. Она представляет собой жидкую (в своей основе) гидрофобную фазу продуктов фоссилизации (захоронения) органического вещества (керогена) в водно осадочных отложениях в бескислородных условиях.… … Википедия

Российская Советская Федеративная Социалистическая Республика - РСФСР. I. Общие сведения РСФСР образована 25 октября (7 ноября) 1917. Граничит на С. З. с Норвегией и Финляндией, на З. с Польшей, на Ю. В. с Китаем, МНР и КНДР, а также с союзными республиками, входящими в состав СССР: на З. с… …

Нефтехимия - У этого термина существуют и другие значения, см. Нефтехимия (значения). Понятие нефтехимии охватывает несколько взаимосвязанных значений: раздел химии, изучающий химизм превращений углеводородов нефти и природного газа в полезные продукты и… … Википедия

Медицина - I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

Порошковое пожаротушение - Порошковый огнетушитель Порошковое пожаротушение тушение пожара огнетушащим порошковым составом. В ряде случаев порошки являются единственным огнетушащим веществом, пригодным для тушени … Википедия

Плутоний - 94 Нептуний ← Плутоний → Америций Sm Pu … Википедия

Химические свойства спиртов - Химические свойства спиртов это химические реакции спиртов во взаимодействии с другими веществами. Они определяются в основном наличием гидроксильной группы и строением углеводородной цепи, а также их взаимным влиянием: Чем больше… … Википедия

Венгрия - (Magyarország) Венгерская Народная Республика, ВНР (Magyar Népköztársaság). I Общие сведения В. государство в Центральной Европе, в центральной части бассейна Дуная. Граничит на С. с Чехословакией, на З. с Австрией, на Ю. с… … Большая советская энциклопедия

Уран (элемент) - У этого термина существуют и другие значения, см. Уран. 92 Протактиний ← Уран → Нептуний … Википедия

Органическая геохимия - изучает химический и изотопный состав органических веществ, заключенных в горных породах (в виде ископаемых остатков и т.д.), их эволюцию в ходе геологической истории, закономерности распределения, а также роль органического вещества в процессах… … Википедия

Таджикская Советская Социалистическая Республика - (Республикаи Советии Социалистии Тоджикистон) Таджикистан. I. Общие сведения Таджикская АССР образована 14 октября 1924 в составе Узбекской ССР; 16 октября 1929 преобразована в Таджикскую ССР, 5 декабря 1929… … Большая советская энциклопедия

ХИМИЯ НЕФТИ И ГАЗА Преподаватель: доцент каф. ГРНМ ИГНД ШИШМИНА ЛЮДМИЛА ВСЕВОЛОДОВНА Доказанные запасы нефти в мире на 1 января 2001 г. (Oil and Gas Journal) Доказанные запасы Добыча нефти в 2000 г. млрд.т % от мировых млн. т % от мировой Кратность запасов, лет 2 3 4 5 6 Азия и Океания, всего в том числе: 6,02 4,3 368,1 11,0 16,4 Китай 3,29 2,3 162,7 4,9 20,2 Индонезия 0,68 0,5 64,9 1,9 10,5 Индия 0,65 0,5 32,0 1,0 20,3 Северная и Латинская Америка, всего в том числе: 20,53 14,6 859,8 25,6 23,9 Венесуэла 10,53 7,5 151,8 4,5 69,4 Мексика 3,87 2,8 152,5 4,6 25,4 США 2,98 2,1 291,2 8,7 10,2 Африка, всего в том числе: 10,26 7,3 335,3 10,0 30,6 Ливия 4,04 2,9 70,4 2,1 57,4 Нигерия 3,08 2,2 99,5 3,0 31,0 Алжир 1,26 0,9 40,0 1,2 31,5 Регион, страна 1 Ближний и Средний Восток, всего в том числе 93,63 66,5 1078,4 32,2 86,8 Саудовская Аравия 35,51 25,2 403,2 12,0 88,1 Ирак 15,41 10,9 134,1 4,0 114,9 Кувейт 12,88 9,1 88,7 2,6 145,2 Абу-Даби 12,63 9,0 92,5 2,8 136,5 Иран 12,15 8,6 178,4 5,3 68,1 Восточная Европа и СНГ, всего в том числе 8,09 5,7 391,7 11,7 20,7 Россия 6,65 4,7 323,5 9,5 20,5 Казахстан 0,74 0,5 31,4 0,9 23,6 Румыния 0,20 0,1 6Д 0,2 32,8 Западная Европа, всего в том числе: 2,35 1,7 321,5 9,6 7,3 Норвегия 1,29 0,9 160,8 4,8 8,0 Великобритания 0,69 0,5 126,8 3,8 5,4 Дания 0,15 0,1 17,9 0,5 8,4 140,88 100 3360,8 100 42,0 Всего в мире Распределение ресурсов нефти по нефтегазовым бассейнам России (%): Западно-Сибирский - 45, Восточно-Сибирский - 15, Арктических морей - 13, Дальнего Востока, включая шельф - 8, Прикаспийский, включая шельф - 7, Тимано-Печорский - 7, Волго-Уральский - 4, Северо-Кавказский - 1. Задачи «Химии нефти и газа» как науки 1. Исследование химического состава нефтей, нефтепродуктов, газоконденсатов и газов с помощью современных физико-химических методов. 2. Исследование физико-химических свойств углеводородов и других компонентов нефти и их влияния на свойства нефтепродуктов, исследование способности компонентов нефти к межмолекулярным взаимодействиям и фазовым переходам. 3. Исследование химизма и механизма термических и каталитических превращений компонентов нефти, в том числе как высокотемпературных (в процессах переработки нефти), так и низкотемпературных, что важно как с аналитической, так и с геохимической (превращение нефтей в природе) точек зрения. 4. Исследование происхождения нефти. I. НЕФТЬ 1. ПРОИСХОЖДЕНИЕ НЕФТИ ГИПОТЕЗЫ МИНЕРАЛЬНОГО ПРОИСХОЖДЕНИЯ НЕФТИ ГИПОТЕЗЫ ОРГАНИЧЕСКОГО ПРОИСХОЖДЕНИЯ НЕФТИ 1.1 Гипотезы минерального происхождения нефти Менделеев Д.И. (1877г.) 2 FeC + З Н20 = Fe2O3 + С2Н6 или в общем виде можно записать: МСm + m Н20 -> МОm + (СН2)m. В глубинных породах найдены карбиды: FeC, TiC, Cr2C3, WC, SiC. Пока нет достаточных данных, которые могли бы однозначно доказать возможность минерального синтеза такой сложной и закономерной по составу системы углеводородов, азот-, серои кислородсодержащих соединений, какой является природная нефть. Геологические доказательства минеральной гипотезы являются косвенными и всегда допускают двойную трактовку. Геологические доказательства: следы метана и нефтяных углеводородов в глубинных кристаллических породах, вулканических газах и магмах; проявления нефти и газа по глубинным разломам. Соколов Н.А. (1892г.) Гипотеза космического происхождения нефти. 1.2 Гипотезы органического происхождения нефти Ломоносов М.В. (1757г.) – заложил основы гипотезы органического происхождения нефти. Химические эксперименты Энглер (1888г.): t сельдевый жир масла (парафины, нафтены, олефины, арены) горючие газы вода Зелинский Н.Д. (1919г.): t озерный ил (сапропель) кокс жидкость (алканы, нафтены, арены, смолистые вещества) газ (СН4, СО2, Н2, Н2S) вода Доказательство 1 Оптическая активность - одно из фундаментальных свойств, общее для живого вещества, продуктов его преобразования и природных нефтей. Оптическая активность нефтей связана главным образом с углеводородами типа тритерпанов и стеранов Тритерпан (гопан) 1927г. Сравнительные исследования органического вещества современных осадков древних осадочных пород Губкин И.М. «…широкое региональное распространение месторождений нефти в осадочных толщах заставляет отбросить любые возможные экзотические источники для образования нефти (животные жиры, скопления морской травы и т. п.) и считать, что источником нефти может быть только широко распространенное в осадочных породах рассеянное органическое вещество смешанного растительно-животного происхождения». Позже оказалось, что в нем обычно преобладает сапропелевый материал, т.е. продукты превращения остатков мельчайших планктонных водорослей. Средняя концентрация РОВ в осадочных породах глинистые ~1% битуминозные сланцы до 5 - 6 %, иногда до 10 – 20 % Результаты исследований: - морской планктон, иловые бактерии: липиды углеводороды до 40 %; до 0,06 %; - органическое вещество морских илов: битуминозные вещества углеводороды до 3 – 5 %; до 0,5 %; - сапропелевое органическое вещество осадочных пород, испытавшее погружение на 2-3 км и температуру до 100 – 150 ОС: битуминозные вещества углеводороды до 10 – 20 %; до 10 – 12 %. Исследования выявили черты сходства между нефтями и углеводородами рассеянного органического вещества осадочных пород. Вассоевич Н.Б. назвал углеводороды рассеянного органического вещества осадочных пород МИКРОНЕФТЬЮ. Н.Б.Вассоевич Доказательство 2 Открытие в нефтях унаследованных от живого вещества биомолекул. Хлорофилл ФТ - фитол Ванадилпорфирин С19Н4 0 БИОМАРКЕРЫ в органическом веществе осадков и нефтях: порфирины изопреноидные углеводороды полициклические углеводороды нормальные алканы Доказательство 3 Сходство изотопного состава углерода во фракциях органического вещества осадочных пород и нефтей. Доказательство 4 – геологические данные Нефть распределена в осадочных толщах неравномерно, что соответствует максимуму накопления органического вещества в девонских, юрско-меловых и третичных отложениях, максимальным массам образовавшихся рассеянных нефтяных углеводородов в нефтематеринских отложениях. Таким образом, химические, геохимические и геологические данные свидетельствуют об органическом происхождении нефти. 1.3 СТАДИИ ПРОЦЕССА ПРЕОБРАЗОВАНИЯ РОВ ОСАДКОВ СТАДИИ I. Седиментогенез. II. Диагенез. III. Катагенез. Литогенез как сводное понятие. Седиментогенез Природные процессы, приводящие к образованию осадков на дне различных водоемов и во впадинах на суше. Диагенез Диагенез – совокупность природных процессов преобразования рыхлых осадков на дне водных бассейнов в осадочные горные породы в условиях верхней зоны земной коры. Главные особенности диагенеза: процессов низкие температуры и давления, процессы существенно биохимические, при участии бактерий. Катагенез Катагенез – совокупность природных процессов изменения осадочных горных пород после их возникновения из осадков в результате диагенеза и до превращения породы. в метаморфические Главными факторами катагенеза являются температура (до 300 – 350оС на глубине 10-12 км) и давление (до 1800 – 2900 ат.). Процессы: уплотнение пород, удаление воды, процессы на контактах зерен, химические превращения. Литогенез Совокупность природных процессов образования и последующих изменений осадочных горных пород до момента их превращения в метаморфические породы. Литогенез = седиментогенез + диагенез + катагенез СВЯЗЬ НЕФТЕГАЗООБРАЗОВАНИЯ СО СТАДИЯМИ ЛИТОГЕНЕЗА Н.Б.Вассоевич: нефть это детище литогенеза. Н.Б.Вассоевич 1.4 СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ ОБ ОБРАЗОВАНИИ НЕФТИ И ГАЗА Состав органического вещества в осадочных породах. Понятие о битумоиде и керогене. Битумоид – растворимые в органических растворителях компоненты органического вещества Кероген – нерастворимые в органических растворителях компоненты органического вещества Превращение органического вещества осадочных пород (а - в) и генерация нефти и газа (г) при росте глубины погружения (Н) и температуры (Т): С - содержание в органическом веществе углерода; Н -водорода, Б - битумоида; ∑Н-генерация нефти; ∑CH4 - генерация метана; Vн- скорость генерации нефти; VM- скорость генерации метана Глубина погружения пласта, м 1500 2000 2500 3000 3500 3500 Стадия трансформации органического вещества Кероген Тяжелая нефть Средняя нефть Легкая нефть Жирный газ Сухой газ СТАДИИ ПРОЦЕССА ПРЕОБРАЗОВАНИЯ РОВ ОСАДКОВ 1. ОСАДКОНАКОПЛЕНИЕ (СЕДИМЕНТОГЕНЕЗ) 2. ДИАГЕНЕЗ: ВОССТАНОВИТЕЛЬНЫЕ УСЛОВИЯ → БИТУМОИДЫ ОКИСЛИТЕЛЬНЫЕ УСЛОВИЯ → КЕРОГЕН 3. КАТАГЕНЕЗ: 3.1 ПРОТОКАТАГЕНЕЗ (РАННИЙ КАТАГЕНЕЗ) 3.2 МЕЗОКАТАГЕНЕЗ (СРЕДНИЙ КАТАГЕНЕЗ) ГЛАВНАЯ ФАЗА НЕФТЕОБРАЗОВАНИЯ 3.3 АПОКАТАГЕНЕЗ ГЛАВНАЯ ФАЗА ГАЗООБРАЗОВАНИЯ Катагенез: I подстадия: до 1,2 км; до 50 – 70 оС II подстадия: 2 - 4 км; до 80 – 150 оС III подстадия: более 4,5 км; до 180 – 250 оС МИГРАЦИЯ УГЛЕВОДОРОДОВ ПРИВЕЛА К ОБРАЗОВАНИЮ ЗАЛЕЖЕЙ НЕФТИ И ГАЗА ГАЗ НЕФТЬ ВОДА 1.5 ОБРАЗОВАНИЕ ОСНОВНЫХ КЛАССОВ УГЛЕВОДОРОДОВ НЕФТИ биосинтез в живом веществе организмов; биохимический процесс преобразования исходного органического вещества на стадии диагенеза осадков; образование преимущественно из липидных компонентов органического вещества при его термической (или термокаталитической) деструкции при 90 - 160°С во время главной фазы нефтеобразования. На состав факторов: углеводородов нефти влияет ряд особенности исходного органического вещества осадков; геохимические условия (Eh, pH) при преобразовании органического вещества в осадках; степень катагенетического (термического) превращения исходного органического вещества в зоне повышенных температур; вторичные изменения нефти в процессе образования залежей и их существования в течение длительного геологического времени (физическая дифференциация углеводородов в процессе миграции, воздействие повышенной температуры, окислительные процессы в залежах и т. п.). АЛКАНЫ В живом веществе широко распространены н-алканы СН3(СН2)nСН3 с нечетным числом атомов углерода. Унаследованные высокомолекулярные н-алканы: хемосинтезирующие бактерии: C12- C31 примерно одинаковым числом четных и нечетных атомов углерода; фотосинтезирующие бактерии: С14- С29; сине-зеленые водоросли: C15 - С20. В живом веществе распространены в основном "четные" одноосновные жирные кислоты. Образованные во время ГФН: R-СООН -> CO2 + RH В образующихся н-алканах преобладают "нечетные" углеводороды. АЛКАНЫ Унаследованные разветвленные и-алканы: 2-, 3-метилалканы с преобладанием нечетного числа атомов углерода: СН3СН2СН(СН2)nСН3 СН3 Образованные во время ГФН из кислородсодержащих производных терпенов: изопреноидные алканы нефти: мирцен Изопреноидные структуры живого вещества оцимен НАФТЕНЫ Унаследованные биосинтетические углеводороды живого вещества: Лимонен α-пинен Камфен НАФТЕНЫ Вторым более важным источником циклоалканов в нефти являются присутствующие в живом веществе организмов кислородсодержащие производные различных циклических терпенов с функциями спиртов, кетонов и кислот. Образование циклоалканов из них происходило в результате потери функциональных кислородных групп и реакций диспропорционирования водорода при почти полном сохранении основы молекулярной структуры исходных терпеноидов живого вещества. Холестерин (спирт) Холестан (углеводород) НАФТЕНЫ Еще более значительный источник образования циклоалканов связан с дегидратационной циклизацией непредельных жирных кислот: …. Из образующихся циклоалкенов при дальнейших превращениях получаются нафтеновые и нафтеновоароматические углеводороды. АРЕНЫ Для живого вещества ароматические структуры не характерны, в то время как в нефтях содержание ароматических углеводородов составляет 10 - 35 %. Поэтому образование аренов в сапропелевом органическом веществе осадков и в нефтях следует связывать со вторичными процессами преобразования органического вещества, происходящими в осадках на стадиях диагенеза и, особенно, катагенеза в зоне повышенных температур. АРЕНЫ При превращении непредельных жирных кислот в присутствии глины как катализатора образуются сначала предельные пятичленные и шестичленные кетоны и неконденсированные нафтены. Дальнейшее превращение предельных циклических кетонов идет по реакции дегидратационной конденсации, для циклогексанона, например, следующим образом: Непредельные жирные кислоты Катализатор Циклогексанон (кетон) Гибридный углеводород нафтено-ароматической структуры 2. ХИМИЧЕСКИЙ СОСТАВ НЕФТИ элементный химический состав – относительное содержание отдельных элементов: С, Н, О, N, S и др.; фракционный состав – содержание соединений нефти, выкипающих в определенных интервалах температур; вещественный состав – содержание углеводородов, гетероатомных и смолистоасфальтеновых соединений; ХИМИЧЕСКИЙ СОСТАВ НЕФТИ групповой состав – содержание соединений различных структурных типов: групповой углеводородный состав; групповой состав гетероатомных соединений; структурно-групповой состав – распределение углерода по типам главных химических структур углеводородов: парафиновых, нафтеновых, ароматических; индивидуальный состав – концентрация конкретных соединений известного строения. 2.1 ЭЛЕМЕНТНЫЙ СОСТАВ НЕФТИ УГЛЕРОД – 83 – 87 % (масс.). ВОДОРОД – 11 – 14 % (масс.). СЕРА – 0,02 – 0,5 % - в малосернистых, 1,5 - 6,0 % - в высокосернистых нефтях АЗОТ – 0,01 – 0,6 % (масс.). КИСЛОРОД – 0,05 – 0,8 % (масс.). МЕТАЛЛЫ – до 0,05 % (масс.). 2.2 ФРАКЦИОННЫЙ СОСТАВ НЕФТИ – отражает содержание соединений нефти, выкипающих в определенных интервалах температур; Разгонка нефти на фракции основа промышленного процесса нефтепереработки старейший метод исследования нефти Нефть «разгоняют» до температур 500 – 550 оС. Все фракции, выкипающие до 300 – 350 оС, называют светлыми. Остаток после отбора светлых дистиллятов (выше 350 оС) – мазутом. Фракции, выкипающие до 200 оС, называют легкими или бензиновыми, от 200 до 300 оС – средними или керосиновыми, выше 300 оС – тяжелыми или масляными. При атмосферной перегонке нефти получают следующие фракции, выкипающие до 350 оС – светлые дистилляты: н.к. (начало кипения) – 140 оС – бензиновая фракция; 140 – 180 оС – лигроиновая (тяжелая нафта); 140 – 220 оС – керосиновая фракция; 180 – 350 (220 – 350) оС – дизельная фракция (легкий газойль, соляровый дистиллят). Мазут разгоняют под вакуумом. При этом получают следующие фракции в зависимости от направления переработки нефти: для получения топлива: 350 – 500 оС – вакуумный газойль (вакуумный дистиллят); более 500 оС – вакуумный остаток (гудрон); для получения масел: 300 – 400 оС – легкая фракция; 400 – 450 оС – средняя фракция; 450 – 490 оС – тяжелая фракция; более 490 оС – гудрон. 2.3 ГРУППОВОЙ ХИМИЧЕСКИЙ СОСТАВ НЕФТИ Химический состав нефти характеризуется содержанием основных групп соединений: углеводороды; гетероатомные соединения: S-, N-, O-, металлсодержащие соединения, смолы и асфальтены. 2.3.1 ГРУППОВОЙ УГЛЕВОДОРОДНЫЙ СОСТАВ НЕФТИ парафиновые (метановые) углеводороды или алканы; нафтеновые (полиметиленовые) углеводороды или цикланы (циклопарафины, циклоалканы); ароматические углеводороды, или арены; непредельные углеводороды, или алкены АЛКАНЫ: - нормальные; - изо-строения; - в т.ч. изопреноидные: Фитан Пристан С20Н4 С19Н4 2 0 В нефти присутствуют: Газообразные алканы С1 – С4 (в виде растворенного газа, метан, этан….); Жидкие алканы С5 – С15; (пентан…..) Твердые алканы С16 – С53 и более. Их содержание – до 5 % (масс.), входят в состав нефтяных парафинов (ВМС). СВОЙСТВА АЛКАНОВ Алканы насыщены водородом и по сравнению с углеводородами других классов имеют минимальную плотность; Нормальные углеводороды, молекулы которых лучше упаковываются в жидкой фазе, имеют более высокие температуры кипения и плотность, чем разветвленные. Твердые алканы кристалличны. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА АЛКАНОВ ПЛОТНОСТЬ, кг/м3, при 20 оС tкип, оС Н - ГЕКСАН 664,7 68,7 И - ГЕКСАН 654,2 60,2 УГЛЕВОДОРОД Алканы практически не растворимы в воде, но хорошо растворимы в ароматических углеводородах. Алканы химически наиболее инертная группа углеводородов, но для них свойственны реакции замещения, дегидрирования, изомеризации и окисления. Н-алканы могут легко окисляться микроорганизмами. И-алканы труднее н-алканов подвергаются воздействию микроорганизмов. ТВЕРДЫЕ УГЛЕВОДОРОДЫ НЕФТЕЙ НЕФТЯНЫЕ ПАРАФИНЫ ЦЕРЕЗИНЫ НАФТЕНЫ: Циклопропан Циклобутан Циклопентан Циклогексан - моноциклические; Бициклодекан (декалин) - бициклические; - три- и полициклические. 1-метил-2-этилциклопентан 1,2-диметил-З-этилциклогексан Цикланы С3 – С4 – газы, С5 – С7 – жидкости, С8 и выше – твердые вещества. В нефтях структуры С3 – С4 не обнаружены, а доминируют пяти- и шестичленные циклы. АРЕНЫ: - моноциклические: бензол и его производные; - бициклические: бифенил и нафталин и их производные; - три- и полициклические: фенантрен, антрацен, хризен, пирен и их гомологи. Бензол Метилбензол (толуол) Ксилолы: орто-, мета-, пара-. Моноциклические арены нефтей представлены алкилбензолами. Алкилбензолы, содержащие в бензольном ядре до 3-х метильных и один длинный заместитель линейного или изопреноидного строения, являются высококипящими углеводородами. Нафталин Бифенил Среди бициклических аренов преобладают производные нафталина, которые могут содержать до 8 насыщенных колец в молекуле. Второстепенное значение имеют производные дифенила и дифенилалканов. Трициклические арены представлены в нефтях производными фенантрена и антрацена, которые могут содержать в молекулах до 4 – 5 насыщенных циклов. Антрацен Фенантрен Полициклические: Пирен Хризен Перилен СРЕДНЕЕ СОДЕРЖАНИЕ АРЕНОВ РАЗНЫХ ТИПОВ, % от общего содержания аренов ЧИСЛО КОЛЕЦ СОДЕРЖАНИЕ Бензольные 1 67 Нафталиновые 2 18 Фенантреновые 3 8 Хризеновые 4 3 Пирен 4 2 Антраценовые 3 1 Прочие - 1 ТИП АРЕНОВ ГИБРИДНЫЕ УГЛЕВОДОРОДЫ Это углеводороды, включающие не только ароматические циклы и алкановые цепи, но и насыщенные циклы. Моноарен стероидной структуры ФИЗИЧЕСКИЕ СВОЙСТВА АРЕНОВ По физическим свойствам арены отличаются от алканов и нафтенов с тем же числом углеродных атомов в молекуле: более высокой плотностью, показателем преломления, температурой кипения; более высокой растворимостью в полярных растворителях, воде; повышенной склонностью межмолекулярным взаимодействиям. к НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ АЛКЕНЫ: углеводороды с открытой содержат одну двойную связь. СН3 – СН2 – СН3 Пропан цепью, СН3 – СН = СН2 Пропен Фролов Е.Б. и Смирнов М.Б. (1990г.) обнаружили олефины (до 15 %) во многих образцах природных нефтей. По их мнению, олефины – продукт радиолитического дегидрирования (- Н2) насыщенных углеводородов нефти под действием естественного радиоактивного излучения в недрах. 2.3.2 ГЕТЕРОАТОМНЫЕ СОЕДИНЕНИЯ НЕФТИ Во всех нефтях наряду с углеводородами имеется значительное количество соединений, включающих такие гетероатомы, как сера, кислород и азот. Содержание этих элементов зависит от возраста и происхождения нефти. Распределение гетероатомов по фракциям нефти неравномерно. Обычно большая их часть сосредоточена в тяжелых фракциях и особенно в смолах и асфальтенах. Содержание смолисто-асфальтеновых соединений выше в молодых нефтях, и поэтому они обычно содержат больше гетероатомных соединений. КИСЛОРОДСОДЕРЖАЩИЕ СОЕДИНЕНИЯ кислоты фенолы кетоны эфиры и другие соединения Кислородсодержащие соединения обладающие кислыми свойствами нейтральные НЕФТЯНЫЕ КИСЛОТЫ АЛИФАТИЧЕСКИЕ, в т.ч. изопреноидные; НАФТЕНОВЫЕ; АРОМАТИЧЕСКИЕ; ГИБРИДНОГО СТРОЕНИЯ. ПРИСТАНОВАЯ ФИТАНОВАЯ НАФТЕНОВЫЕ кислоты особенно характерны для нефтей нафтенового основания. НАФТЕНОВЫЕ КИСЛОТЫ МОНОЦИКЛИЧЕСКИЕ ПОЛИЦИКЛИЧЕСКИЕ Идентифицировано несколько кислот типа: Ни одна из пентациклических кислот пока не выделена индивидуально: Гопилуксусная кислота Ароматические кислоты Нафтеноароматические кислоты НЕЙТРАЛЬНЫЕ СОЕДИНЕНИЯ КЕТОНЫ Ацетон СН3 – С – СН3 (алифатический) О Циклические кетоны Флуоренон Бензиновая фракция Средние и высококипящие фракции Ацетилизопропил-метилциклопентан ПРОСТЫЕ И СЛОЖНЫЕ ЭФИРЫ ПРОСТЫЕ ЭФИРЫ Имеют циклическую структуру типа фурановой: алкилдигидробензофураны (кумароны) СЛОЖНЫЕ ЭФИРЫ Многие из них являются ароматическими соединениями. Сложные эфиры могут иметь и насыщенную структуру типа: СЕРОСОДЕРЖАЩИЕ СОЕДИНЕНИЯ Сера наиболее распространенный гетероэлемент в нефтях. Она входит в состав до ~ 60 % углеводородов нефти, превращая их в серосодержащие гетероатомные соединения (ГАС). Серосодержащие соединения нефти неравномерно распределены по фракциям. В отличие от других гетероэлементов, сера присутствует в дистиллятных фракциях (до 450 – 500 оС). ФОРМЫ СЕРЫ Растворенная элементарная сера, Сероводород, Меркаптаны, Сульфиды, Дисульфиды, Тиофен и его производные, Соединения, содержащие одновременно атомы серы, кислорода,азота. МЕРКАПТАНЫ (ТИОСПИРТЫ) R – SH R – УГЛЕВОДОРОДНЫЙ РАДИКАЛ. Пример: СН3 – (СН2)3 – SH, бутилмеркаптан. СУЛЬФИДЫ (ТИОЭФИРЫ) ДИАЛКИЛСУЛЬФИДЫ R1 - S - R2 ЦИКЛИЧЕСКИЕ СУЛЬФИДЫ (тиацикланы) 60-70 % тиациклопентанов (тиаалканы) Н С – S – C Н7, Пример: 3 3 метилпропилсульфид. алкилтиофан 30-40 % тиациклогексанов диалкилтиациклогексан Тиацикланы бициклические. Средние фракции нефти. 35: 50: 15 В меньших количествах в нефтях содержатся би- и полициклические соединения, включающие ароматические кольца. На их долю приходится менее 10 % тиацикланов. ДИСУЛЬФИДЫ R1 - S – S - R2 Встречаются в легких и средних фракциях безмеркаптановых нефтей, где их количество может достигать 7 - 15 % от всех серосодержащих соединений этой фракции. ТИОФЕН и его производные: - алкилтиофены; - арилтиофены: бензотиофен, дибензотиофен, нафтотиофен: Тиофен и его производные содержатся главным образом в средне- и высококипящих фракциях нефти, в которых они составляют 45 - 84 % всех серосодержащих соединений. Тетраи пентациклические системы, включающие тиофеновое кольцо, характерны для тяжелых и остаточных фракций нефти. Эти системы, помимо ароматических, содержат нафтеновые кольца и алкильные заместители. Структурные формулы - гипотетические Типичное соотношение серосодержащих ГАС, % Меркаптаны Сульфиды Тиофены 0–7 7 – 40 50 - 90 АЗОТСОДЕРЖАЩИЕ СОЕДИНЕНИЯ Азотистые соединения сосредоточены в высококипящих фракциях и в тяжелых остатках. АЗОТИСТЫЕ ОСНОВАНИЯ НЕЙТРАЛЬНЫЕ АЗОТИСТЫЕ СОЕДИНЕНИЯ АЗОТИСТЫЕ ОСНОВАНИЯ - ароматические гомологи пиридина. хинолин 3,4-бензакридин фенантридин бициклические; 7,8-бензохинолин трициклические; тетрациклические структуры. НЕЙТРАЛЬНЫЕ АЗОТИСТЫЕ СОЕДИНЕНИЯ - ароматические производные пиррола и амиды кислот (– СОNH2). индол карбазол бензокарбазол ПОРФИРИНЫ Азотсодержащие соединения – нежелательный компонент нефтяных топлив, поскольку являются ядами катализаторов ароматизации, крекинга, гидрокрекинга, в дизельных топливах интенсифицирует осмоление и потемнение топлива. Азотсодержащие соединения являются природными ПАВ и определяют: поверхностную активность на границах раздела жидких фаз; смачивающую способность нефти на границах раздела порода – нефть, металл – нефть; обладают свойствами ингибиторов коррозии металлов. СМОЛИСТО-АСФАЛЬТЕНОВЫЕ ВЕЩЕСТВА Выделение индивидуальных веществ из остаточных фракций нефти сложно. Поэтому нефтяные остатки разделяют на групповые компоненты: смолы, асфальтены, масла. В тяжелых нефтяных остатках от 40 до 70 % составляют смолисто-асфальтеновые вещества. СХЕМА РАЗДЕЛЕНИЯ НЕФТЬ (НЕФТЯНЫЕ ОСТАТКИ) n-пентан АСФАЛЬТЕНЫ МАСЛА+СМОЛЫ Al2O3 (осадок) МАСЛА СМОЛЫ (n-пентан) (бензол, толуол, спиртотолуол) Согласно данной схеме разделения: Асфальтенами называют фракции нефти, нерастворимые в нормальных алканах, таких как nпентан, при нормальных условиях, но растворимые в избытке ароматических соединений, таких, как бензол или толуол. Смолы – фракции нефти, растворимые в n-пентане, толуоле и бензоле при комнатной температуре. Физико-химическая характеристика смол Нефть М 4 Элементный состав, % 20 Н:С С Н S N О 594 1,042 84,52 9,48 2,6 0,69 2,76 Ромашкинская 816 1,055 81,91 9,38 Туймазинская 725 1,042 84,10 9,80 4,00 2,1 1,4 Битковская 501 1,021 84,30 10,36 2,79 2,55 |1,4 Сагайдакская 769 1,033 86,40 10,01 1,80 2,31 1,4 Радченковская 770 1,014 85,00 10,50 1,00 Бавлинская 8,7 0,45 1,3 1,4 3,05 1,5 Смолы - вязкие малоподвижные жидкости (или аморфные твердые тела) от темно-коричневого до темно-бурого цвета с плотностью около единицы или несколько больше. Молекулярная масса смол в среднем от 700 до 1000 а. е. м. Смолы нестабильны, выделенные из нефти или ее тяжелых остатков могут превращаться в асфальтены. Элементный состав асфальтенов Элементный состав, % Нефть Содержание в нефти, % С Н S N О Н: С Бавлинская 2,0 83,50 7,76 3,78 1,15 3,81 1,19 Ромашкинская 3,8 83,66 7,87 4,52 1,19 2,76 1,13 Туймазинская 3,9 84,40 7,87 4,45 1,24 2,04 1,13 Битковская 2,2 85,97 8,49 1,65 Советская 1,4 83,87 8,67 1,64 1,56 4 62 1,22 Самотлорская 1,4 85,93 9,19 1,76 1,69 2,43 1,16 0 3,99 1,18 Асфальтены - аморфные твердые вещества темнобурого или черного цвета. При нагревании не плавятся, а переходят в пластическое состояние (~300°С), при более высокой температуре разлагаются с образованием газа, жидких веществ и твердого остатка. Плотность асфальтенов больше единицы. Асфальтены очень склонны к ассоциации, поэтому молекулярная масса в зависимости от метода определения может различаться на несколько порядков (от 2000 до 140000 а. е. м.). Молекулы смол и асфальтенов представляют собой гибридные соединения. Основой таких молекул является полициклическое ядро, (преимущественно шестичленных), метильных и один содержащее: длинный колец, (С3-C12) 4 - 6, несколько алкильный заместитель. В циклическую часть молекулы могут входить кольца, содержащие серу или азот, кислородные функциональные группы. Спиртотолульные смолы Асфальтены Ri – алкильные заместители. He – ароматическое кольцо с гетероатомом Строение асфальтеновых частиц (ассоциатов) Lа - диаметр слоя; Lс - толщина пачки; Ld - расстояние между слоями МИНЕРАЛЬНЫЕ КОМПОНЕНТЫ НЕФТИ соли, комплексы металлов, коллоидно-диспергированные минеральные вещества. Элементы, входящие в состав этих веществ, называют микроэлементами, т.к. их содержание колеблется от 10-8 до 10-2 %. МЕТАЛЛЫ НЕФТИ щелочные и щелочноземельные (Li, Na, К, Ва, Са, Sr, Mg), металлы подгруппы меди (Сu, Ag, Аu), подгруппы цинка (Zn, Cd, Hg), подгруппы бора (В, Al, Ga, In, Ti), подгруппы ванадия (V, Nb, Та), металлы переменной валентности (Ni, Fe, Mo, Co, W, Cr, Mn, Sn и др.) НЕМЕТАЛЛЫ НЕФТИ Si, Р, As, Cl, Br, I и др. Принято считать, что микроэлементы могут находиться в нефти в виде: мелкодисперсных водных растворов солей, тонкодисперсных взвесей минеральных пород, химически связанных с органическими веществами комплексных или молекулярных соединений, которые подразделяют на: элементорганические соединения, (хлор – углерод); соли металлов (-СОО--Na); хелаты, т. е. внутримолекулярные комплексы металлов (порфирины); комплексы с гетероатомами или -системой полиароматических асфальтеновых структур и др. Внутримолекулярные комплексы относительно хорошо изучены на примере порфириновых комплексов ванадия (VO2+) и никеля. Остается невыясненным, почему в нефти встречаются только ванадил- и никельпорфирины. Более сложные внутримолекулярные встречаются в смолах и асфальтенах: комплексы Здесь помимо азота в комплексообразовании принимают участие атомы кислорода и серы. Такие комплексы могут образовывать медь, свинец, молибден и другие металлы. Для асфальтенов установлено, что: концентрация микроэлементов возрастает с увеличением молекулярной массы асфальтенов, ароматичности, содержания N, S, O. Предполагают, что атомы металлов создают комплексные соединения с гетероатомами асфальтенов по донорноакцепторному типу. В этом случае комплексы могут образовываться по периферии фрагментов асфальтеновой слоисто-блочной структуры. Однако возможно и проникание атомов металлов между слоями этой структуры. Характерной особенностью нефти является то, что в ней ванадий и никель встречаются в значительно больших концентрациях, чем другие элементы. Обычно в сернистых нефтях превалирует ванадий, а в малосернистых нефтях (с большим содержанием азота) - никель. Следует отметить, что в порфириновых комплексах связано от 4 до 20 % ванадия и никеля, находящихся в нефти, остальное количество обнаружено в других, более сложных соединениях, которые пока не идентифицированы. РОЛЬ МИКРОЭЛЕМЕНТОВ Ванадилпорфирины в составе асфальтенов вносят вклад в поверхностную активность нефтей. Большинство микроэлементов являются ядами катализаторов нефтепереработки. Поэтому для выбора типа катализатора необходимо знать состав и количество микроэлементов. Поскольку большая часть микроэлементов концентрируется в смолисто-асфальтеновой части нефти, при сжигании мазутов образующийся оксид ванадия корродирует топливную аппаратуру и отравляет окружающую среду. Современные электростанции, работающие на сернистом мазуте, могут выбрасывать в атмосферу вместе с дымом до тысячи килограммов V2O5 в сутки. С другой стороны, золы этих ТЭЦ значительно богаче по содержанию ванадия, чем многие промышленные руды. В настоящее время уже работают установки по извлечению V2O5 из золы ТЭЦ. Сведения о составе и количестве микроэлементов нефти необходимы и геологам для решения вопросов: о происхождении нефти, для оконтуривания районов ее залегания, изучения вопросов миграции и аккумуляции нефти. 4. КЛАССИФИКАЦИИ НЕФТИ ВИДЫ КЛАССИФИКАЦИЙ ХИМИЧЕСКАЯ ГЕОХИМИЧЕСКАЯ (ГЕНЕТИЧЕСКАЯ) ТЕХНОЛОГИЧЕСКАЯ (ПРОМЫШЛЕННАЯ, ТОВАРНАЯ) 4.1 ХИМИЧЕСКИЕ КЛАССИФИКАЦИИ КЛАССИФИКАЦИЯ ГРОЗНИИ 1. 2. 3. 4. 5. 6. ПАРАФИНОВЫЕ ПАРАФИНО-НАФТЕНОВЫЕ НАФТЕНОВЫЕ ПАРАФИНО-НАФТЕНО-АРОМАТИЧЕСКИЕ НАФТЕНО-АРОМАТИЧЕСКИЕ АРОМАТИЧЕСКИЕ 4.2 ГЕНЕТИЧЕСКИЕ КЛАССИФИКАЦИИ КЛАССИФИКАЦИЯ ПЕТРОВА Ал.А. К категории А относят нефть в том случае, если на хроматограммах фракции 200-430°С проявляются в аналитических количествах пики н-алканов. На хроматограммах этой фракции нефтей категории Б пики н-алканов отсутствуют. В свою очередь, в зависимости от относительного содержания нормальных и изопреноидных углеводородов в нефтях категории А и от наличия или отсутствия изопреноидных углеводородов в нефтях категории Б, нефти каждой категории разделяют на два подтипа: А1, А2, Б1, Б2. Тип А1 А2 Б1 Б2 Сумма 15-60 10-30 4-10 5-30 Алканы ЦиклонРазветв алканы Арены строени лённые я 5-25 0,05-6,0 15-45 10-70 0,5-5 1,0-6,0 20-60 15-70 20-70 25-80 0,5 0,5-6,0 20-70 20-80 4.3 ТЕХНОЛОГИЧЕСКИЕ КЛАССИФИКАЦИИ Содержание серы, % Класс Тип в в в нефти в бе нз ин е Потенциально е содержани е базовых масел, % реакти вном топли ве диз ель ном топ лив е Содержание фракци й до 350 °С Группа на нефть на маз ут М1 > 25,0 > 45,0 I ≤ 0,50 ≤ 0,10 ≤ 0,10 ≤ 0,20 Т1 ≥ 55,0 М2 0,15– 24, 9 < 45,0 II 0,51– 2,00 ≤ 0,10 ≤ 0,25 ≤ 1,00 Т2 45,0–54,9 М3 15,0– 24, 9 30– 44, 9 III > 2,00 > 0,10 > 0,25 > 1,00 Т3 < 45,0 М4 < 15,0 < 30,0 Подгруп па Индекс вязкости базовых масел И1 > 95 И2 90–95 И3 И4 85–89,9 < 85 Ви д П1 П2 П3 Содержание парафинов в нефти, % ≤ 1,50 1,51–6,00 > 6,00 Депарафинизация не требуется Для получения реактивного и дизельного топлива, дистиллятных базовых масел Для получения реактивного и дизельного летнего топлива - требуется - Для получения дизельного зимнего топлива и дистиллятных базовых масел Для получения реактивного и дизельного топлива, дистиллятных Действующая технологическая классификация по физико-химическим свойствам, степени подготовки, содержанию сероводорода и легких меркаптанов нефть подразделяют на классы, типы, группы, виды. Классы нефти Класс 1 2 3 4 Наименование Малосернистая Сернистая Высокосернистая Особо высокосернистая Массовая доля серы, % до 0,60 включ. от 0,61 до от 1,81 до св. 3,50 1,80 3,50 По плотности, а при поставке на экспорт - дополнительно по выходу фракций и массовой доле парафина, нефть подразделяют на пять типов (таблица 2): - особо легкая; - легкая; - средняя; - тяжелая; - битуминозная. Типы нефти Норма для нефти типа 0 Параметр для страны 1 для экспор та для страны 2 для экспор та для страны 3 для экспор та для страны 4 для экспор та для страны для экспор та Плотность, кт/м3, при температуре 20 оС Не более 830,0 830,1-850,0 850,1870,0 870,1895,0 Более 895,0 15 °С Не более 834,5 834,6854,4 854,5874,4 874,5899,3 Более 899,3 Группы нефти По степени подготовки нефть подразделяют на группы 1-3 Параметр Норма для нефти группы 1 2 3 1 Массовая доля воды, %, не более 0,5 0,5 1,0 2 Концентрация хлористых солей, мг/дм3, не более 100 300 900 3 Массовая доля механических примесей, %, не более 0,05 0,05 0,05 4 Давление насыщенных паров, кПа (мм рт. ст.), не более 66,7 (500) 66,7 (500) 66,7 (500) 5 Содержание Не нормируется хлорорганических соединений, Определение обязательно млн.-1 (ррт) Виды нефти По массовой доле сероводорода и меркаптанов нефть подразделяют на виды Параметр легких Норма для нефти вида 1 2 1 Массовая доля сероводорода, млн,-1 (ррm), не более 20 50 2 Массовая доля метил- и этил меркаптанов в сумме, млн,-1 (ррm), не более 40 60 Условное обозначение нефти состоит из четырех цифр, соответствующих обозначениям класса, типа, группы и вида нефти. При поставке нефти на экспорт к обозначению типа добавляется индекс «э». Структура условного обозначения нефти: 5 НЕФТЬ КАК ДИСПЕРСНАЯ СИСТЕМА В терминах физической химии нефть можно определить как многокомпонентную смесь сложного состава, способную в широком интервале значений термобарических параметров изменять агрегатное состояние и, соответственно, объемные свойства. Зависимость плотности и вязкости бинарных углеводородных систем от мольной доли компонентов Бинарные углеводородные системы: 2,2 – диметилпентан гексадекан (а), бензол-декан (б), гексан-додекан (в), циклогексантолуол (г) Дисперсные состоящие системы из двух – или гетерогенные более фаз с системы, развитой поверхностью раздела между ними. Одна из фаз образует непрерывную дисперсионную среду, в которой распределена дисперсная фаза в виде мелких твердых частиц, капель жидкости или пузырьков газа. Нефть - это сложная многокомпонентная смесь, которая в зависимости от внешних условий проявляет свойства молекулярного раствора или дисперсной системы Макромолекулы ВМС Надмолекулярные структуры Ассоциаты t Комплексы Надмолекулярные структуры имеют размеры 10-4 – 10-9 м, отличаются от макромолекул ВМС в несколько раз большей молекулярной массой, наличием поверхности раздела фаз между ними и дисперсионной средой, высокой плотностью, малой летучестью и придают нефтяной системе специфические свойства. Система приобретает: структурно-механическую прочность неустойчивость Основные понятия физикохимической механики нефтяных дисперсных систем Цель физико-химической механики – установление закономерностей образования пространственных структур в дисперсных системах, а также процессов деформации и разрушения таких структур в зависимости от физико-химических и механических факторов. Структурные единицы нефтяной дисперсной системы имеют сложное строение, обусловленное природой и геометрической формой макромолекул ВМС, поверхностными силами между ними, взаимодействием дисперсной фазы с дисперсионной средой и другими факторами. Для описания явлений в нефтяной дисперсной системе предложена модель сложных структурных единиц (ССЕ). Сложная структурная единица 3 2 1 1 - ядро; 2 - сольватная оболочка; 3 - промежуточный слой ССЕ могут образовывать свободнодисперсные системы (золи) и связаннодисперсные системы (гели). В свободнодисперсной системе частицы дисперсной фазы не связаны друг с другом и могут перемещаться под действием внешних сил (силы тяжести или броуновского движения). Дисперсная фаза связаннодисперсных систем образует сплошной каркас (пространственную структуру), внутри которой содержится дисперсионная среда. Под структурно-механической прочностью НДС понимается ее способность сопротивляться действию внешних сил. Чем больше силы взаимодействия макромолекул ВМС в ассоциате и между ассоциатами в системе, тем выше структурно-механическая прочность НДС. Структурно-механическая прочность нефтяных дисперсных систем определяется толщиной сольватной оболочки вокруг надмолекулярной структуры. Структурно-механическую прочность НДС оценивают степенью отклонения структурной вязкости max от динамической вязкости min. При повышении температуры СМП снижается и исчезает, когда система переходит в состояние молекулярного раствора. Под кинетической устойчивостью НДС понимается способность дисперсной фазы сохранять в течение определенного времени равномерное распределение ССЕ в дисперсионной среде). Неустойчивость проявляется укрупнением частиц дисперсной фазы за счет их слипания (т.е. коагуляции) под влиянием межмолекулярного взаимодействия друг с другом. При этом теряется кинетическая устойчивость и происходит разделение фаз, т.е. частицы выпадают в осадок. Одни и те же соединения, из которых состоит нефть как дисперсионная среда, по разному влияют на поведение ассоциатов различной природы в нефтяной системе. Парафины хорошо растворяются в парафиновых углеводородах. Твердые парафины лучше растворяются в высокомолекулярной части неполярных растворителей. Таким образом, степень полярности дисперсионной среды по-разному влияет на размер различных по природе ассоциатов в нефтяной дисперсной системе, обусловливая различную концентрацию надмолекулярных структур в нефти. Область условий, при которых нефтяная система является молекулярной, зависит от ее химического состава. С ростом содержания смолисто-асфальтеновых соединений область молекулярного состояния постепенно вырождается и нефтяная система становится дисперсной при любых значениях давления и температуры. Причины возникновения нефтяных систем, содержащих ССЕ 1.Удаление из системы углеводородов, являющихся растворителями надмолекулярных структур. 2. Введение в нефтяную систему специальных добавок 3.Понижение или повышение температуры. ХАРАКТЕРИСТИКИ ОБРАТИМОЙ НЕФТЯНОЙ ДИСПЕРСНОЙ СИСТЕМЫ 4 3 1 3 2 0 нерастворитель плохой растворитель хороший растворитель 1 - радиус ядра надмолекулярной структуры; 2 - толщина сольватного слоя; 3 - устойчивость; 4 - структурно-механическая прочность. Процессами физического агрегирования управлять изменением следующих факторов: можно температура; давление; отношение структурирующихся компонентов неструктурирующимся; растворяющая сила среды; степень диспергирования ассоциатов, применяя различные способы: механические, электрические и магнитные поля, ПАВ, изменение состава дисперсионной среды и др. к 6 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ Плотность Молекулярная масса Вязкость Температура застывания Поверхностное натяжение Давление насыщенных паров Температура вспышки и воспламенения Реологические свойства 6.1 ПЛОТНОСТЬ Лабораторная работа 6.2 МОЛЕКУЛЯРНАЯ МАССА Молярная масса - важнейшая характеристика нефти. Средняя молярная масса многих нефтей 250-300. Первый представитель жидких углеводородов нефти - пентан - имеет ММ 72. У наиболее высокомолекулярных гетероатомных соединений нефти, смол и асфальтенов, ММ ~ 1200-2000 и выше. Знание молекулярной массы нефтяных фракций необходимо при структурно-групповом анализе масляных фракций, при определении содержания непредельных углеводородов, при технологических расчетах, например, процесса сепарации нефти от газа. Войновым показано, что для парафиновых углеводородов средний молекулярный вес (Мср) зависит от их средних температур кипения (tср). M 60 0 , 3 t 0 , 001 t 2 , Кривые разгонки нефти Молярная масса - величина аддитивная и для смеси различных фракций может быть вычислена как отношение суммы масс компонентов смеси к сумме числа молей тех же компонентов в смеси: M СМ m 1 m 2 m 3 ..... m1 M 1 m2 M 2 m3 M , .... 3 где mi - массы компонентов, кг (г); Мi - мольные массы тех же компонентов. По этой формуле возможно вычислить мольную массу нефти, если известны мольные массы полученных из нее дистиллятов. При экспериментальном определении молекулярной массы нефти пользуются криоскопическим и эбулиоскопическим методами. При определении молекулярной массы криоскопическим методом наблюдают за понижением температуры замерзания раствора исследуемого вещества в выбранном растворителе по сравнению с температурой замерзания чистого растворителя (Δt) и рассчитывают молекулярную массу (М) по формуле M K g 1000 G tз ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ НЕФТИ Криоскопия (от греч. kryos – холод, мороз, лед, и skopeо смотрю, наблюдаю) - физико-химический метод исследования жидких растворов, основанный на понижении температуры замерзания (кристаллизации) раствора по сравнению с температурой замерзания чистого растворителя. Для любой химически чистой жидкости кристаллизация идет при постоянной температуре - температуре кристаллизации, которая совпадает с температурой плавления данного кристалла. 1883 г., французский химик Ф. М. Рауль сделал открытие: понижение температуры замерзания, вызываемое разными растворенными веществами, взятыми в одинаковых молярных количествах, одинаково для данного растворителя. Закон Рауля гласит: относительное понижение парциального давления пара растворителя над разбавленным раствором неэлектролита равно молярной доле растворенного вещества. Для многих многокомпонентных смесей закон Рауля выполняется с достаточной точностъю при молярной доле растворенного вещества в пределах 0,1 – 0,5. Понижение температуры замерзания Δt, измеряемое высокочувствительными термометрами или термопарами, связано с числом молей n растворенного вещества соотношением: 2 t n R t0 1000 пл nK где R - универсальная газовая постоянная; t0 и λпл - соответственно температура замерзания и удельная теплота плавления чистого растворителя; K – криоскопическая постоянная растворителя. Криоскопическая постоянная характеризует понижение температуры замерзания, вызываемое 1 молем растворенного вещества (6,02∙1023 недиссоциированных частиц) в 1 кг растворителя. Итак, депрессия ∆t, т. е. понижение температуры замерзания растворителя при растворении в нем исследуемого вещества, пропорциональна его молярной концентрации С: ∆t = K·C, Тогда: С=а/М=n, где а – количество вещества (нефти), г; М – молярная масса вещества. Отсюда: М = а·К / ∆t Молекулярная масса и депрессия для нефти и нефтепродуктов, растворенных в бензоле Нефтепродукт Калинская нефть Бензин Лигроин Керосин Машинное масло С, масс. % М ∆t, оС 1,59 229 0,357 2,02 1,12 1,65 103 130 168 1,000 0,435 0,502 1,16 387 0,157 Недостатки криоскопического метода: закон Рауля применим к разбавленным растворам; в применяемых растворителях многие вещества проявляют склонность к ассоциации; при небольших навесках получаемая депрессия слишком мала и возможны ошибки при отсчете. Прибор Бекмана 1 - пробирка с пробкой; 2 - пробирка с пробкой; 3 – охладительная баня; 4 - термометр Бекмана; 5- мешалка 6 - отвод для введения пробы. Термометр Бекмана относится к числу дифференциальных термометров, позволяющих измерять не саму температуру, а ее изменение. Термометр имеет большой ртутный резервуар и особое устройство верхней части капиллярной трубки, позволяющее изменять количество ртути и измерять различные температурные интервалы. Шкала термометра длиной около 25 см разделена на 5 или 6 градусов калибровкой через 0,020, 0,010, или 0,005°. Температуру отсчитывают с точностью до 0,001° при помощи лупы или зрительной трубки. Недостаток термометров Бекмана: недостаточно точное измерение небольших изменений температуры кристаллизации или температуры кипения растворителя. 6.3 ВЯЗКОСТЬ Лабораторная работа 6.4 ТЕМПЕРАТУРА ЗАСТЫВАНИЯ Температура, при которой нефть в условиях теряет подвижность, температурой застывания. стандартных называется Согласно ГОСТ 20287-74 , температура, при которой охлаждаемая в пробирке нефть не изменяет уровня при наклоне пробирки на 45о, считается температурой застывания. Точность определения составляет 2 оС. Нефть из-за многокомпонентности состава не имеет четкой температуры застывания. Индивидуальные вещества температурой кристаллизации. характеризуются Температура застывания нефтей изменяется в широких пределах: от - 62 до +35 °С. Экстремальные значения температуры застывания имеют малопарафиновая эхабинская нефть (-62°С) и высокопарафиновая тасбулатская нефть (+35 °С). От температуры застывания нефтепродуктов зависят условия транспортировки, хранения и оборудования. нефтей и их добычи, эксплуатации На температуру застывания нефти и нефтепродукта существенное влияние оказывает содержание парафинов, способных при соответствующих температурах к структурированию и образованию ассоциатов (надмолекулярных структур). С увеличением молекулярной массы углеводородов (особенно н-алканов) их ассоциирующая способность возрастает, и соответственно с утяжелением нефтяных фракций (бензиновая - дизельная – масляная остаточная) повышается их температура застывания. С позиций физико-химической механики нефтяных дисперсных систем температура застывания нефти (нефтепродукта) определяется как переход из свободно-дисперсного в связанно-дисперсное (твердое) состояние. 6.5 ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ Лабораторная работа 6.6 ДАВЛЕНИЕ НАСЫЩЕННЫХ ПАРОВ Лабораторная работа 6.7 ТЕМПЕРАТУРА ВСПЫШКИ, ВОСПЛАМЕНЕНИЯ И САМОВОСПЛАМЕНЕНИЯ Температурой вспышки называется минимальная температура, при которой пары нефтепродукта образуют с воздухом смесь, способную к кратковременному образованию пламени при внесении в нее внешнего источника воспламенения (пламени, электрической искры). Большинство нефтей имеют температуру вспышки паров ниже 0 °С. Температура вспышки усть-балыкской и самотлорской нефтей равна соответственно -30 °С и -35 °С. По температуре вспышки нефтепродукты делятся на легковоспламеняющиеся и горючие. К легковоспламеняющимся относятся нефтепродукты, имеющие температуру вспышки паров не более 61 °С в закрытом тигле (не более 66 °С в открытом тигле). К классу горючих относятся нефтепродукты с температурой вспышки более 61 °С в закрытом тигле (более 66 °С в открытом тигле). Легковоспламеняющимися нефтепродуктами являются моторные топлива. Так, автомобильный бензин имеет температуру вспышки в закрытом тигле -50 °С, авиационный -30 °С. В зависимости от сортности топлива для реактивных двигателей должны иметь температуру вспышки не ниже 28- 60 °С, а топлива для быстроходных дизелей 35-61 °С. Температура вспышки связана с температурой кипения исследуемого вещества. Для индивидуальных углеводородов эта зависимость по Орманди и Кревину выражается равенством: Твсп = К· Ткип где Твсп - температура вспышки, К; К - коэффициент, равный 0,736; Ткип - температура кипения, К. Температура вспышки - величина неаддитивная. Опытное ее значение всегда ниже рассчитанного по правилам аддитивности среднеарифметического значения температур вспышек компонентов, входящих в состав смеси. Это объясняется тем, что температура вспышки зависит, главным образом, от давления пара низкокипящего компонента, а высококипящий компонент служит передатчиком тепла. Пример: попадание 1 % бензина в смазочное масло снижает температуру вспышки от 200 до 170°С, а 6 % бензина снижают её почти вдвое. Температурой воспламенения называется минимальная температура, при которой пары испытуемого продукта при внесении внешнего источника воспламенения образуют устойчивое незатухающее пламя. Температура воспламенения всегда выше температуры вспышки, часто довольно значительно - на несколько десятков градусов. Температура воспламенения дизельных топлив находится в пределах 57-119°С. Температурой самовоспламенения называется минимальная температура, при которой пары нефтепродуктов в смеси с воздухом воспламеняются без внешнего источника воспламенения. На этом свойстве нефтепродуктов основана pa6oта дизельных двигателей внутреннего сгорания. Температура самовоспламенения вспышки на несколько сот градусов. выше температуры Температура самовоспламенения нефтепродукта с увеличением его молекулярной массы уменьшается: если бензины самовоспламеняются при температурах выше 500°С, то дизельные топлива - при 300-330 °С. По температурам вспышки, воспламенения и самовоспламенения оценивают пожаро- и взрывоопасность нефти и нефтепродуктов. Нефть относят к легковоспламеняющимся жидкостям 3-го класса (ГОСТ 19433). 6.8 РЕОЛОГИЧЕСКИЕ СВОЙСТВА Реология – наука, которая изучает механическое поведение твердо- и жидкообразных тел (реос – течение; логос – учение). Представим, что к противоположным сторонам кубика приложена касательная сила F. Она создает численно равное ей напряжение сдвига. Под действием напряжения сдвига происходит деформация кубика: смещение его верхней грани по отношению к нижней на величину. Это смещение численно равно tg тангенсу угла отклонения боковой грани, т.е. относительной деформации сдвига. Связь между величинами напряжения сдвига, деформации и их изменениями во времени есть выражение механического поведения, которое составляет предмет реологии. Существуют две модели жидкости: модель идеальной жидкости модель вязкой жидкости Жидкие среды, для описания которых модель вязкой жидкости не подходит, называются неньютоновскими. Неньютоновские вязкие жидкости делятся на две группы: а) жидкости, обладающие начальным напряжением сдвига 0; б) жидкости не обладающие начальным напряжением сдвига 0. Для неньютоновских вязких понятие кажущейся вязкости. жидкостей вводится Вязкость неньютоновской жидкости не является постоянной величиной, а зависит от величины напряжения сдвига: const, = f (, d/dr, T) τ dυ n τ = k · (dr) , 4 2 1 τp τ0 τ0 3 dV dr n = 1- ньютоновская жидкость; tg = µ = const; n < 1 - псевдопластичная жидкость; n > 1 - дилатантная жидкость; 1 - ньютоновская жидкость; 2 - псевдопластичная жидкость; 3 - дилатантная жидкость; 4 - вязкопластичная жидкость Зависимость кажущейся вязкости неньютоновской жидкости от скорости сдвига и температуры t 2 > t1 t1 t2 Скорость сдвига, с-1 dV dr Зависимость кажущейся вязкости неньютоновской жидкости от температуры и скорости сдвига 30 20 10 0 20 25 30 35 Температура, оС 40 Кривая эффективной вязкости нефти μ1 μ2 Т = const Напряжение сдвига μ3 τ Способность к самопроизвольному восстановлению структуры после ее разрушения называется тиксотропией. Тиксотропные свойства нефти зависят от: содержания, химического состава, дисперсного состояния высокомолекулярных парафинов нефти, содержания и адсорбционного действия на процессы кристаллизации парафина смолисто-асфальтеновых веществ, температурного воздействия на нефть и др. II. ГАЗ 7. Ресурсы и месторождения природного газа Мировые извлекаемые запасы газа оцениваются в 113 трлн. м3. Разведанные запасы газа: Россия - ~ 38 % от мировых (1 место в мире). Ближний и Средний Восток - ~ одна треть общемировых его запасов приходится (преимущественно нефтяной): Иран (14,2% от мировых запасов - 2 место в мире), Абу Даби (4,6 %), Саудовская Аравия (4,5 % - 3 место в мире), Катар (4,1 %), Ирак (2,4 %) и Кувейт (1,2 %). Азиатско-Тихоокеанский регион: Индонезия (2,5%), Малайзия (1,5 %), Китай (1 %}, Индия и Австралия (в сумме 1,2 % от мировых). Африка (7,5 %): Алжир (3,2 %), Нигерия (2,2 %) и Ливия (0,7 %). Американский континент: 14,1 % от мировых запасов, в т.ч. США - 4,1 % (4 - 5 место), Венесуэла - 2,9 %, Канада - 2,7 % и Мексика 2,1 %. Западная Европа: 5,4 % от мировых запасов, в т.ч. Норвегия - 2,3 %, Нидерланды - 1,7 % и Великобритания - 0,6 %. Уникальных (с запасом более 1 трлн. м3) месторождений природного газа в мире насчитывается 11. Из них 7 находится в России. Страна Начальные запасы, трлн м3 Уренгойское Россия 4 Ямбургское Россия 3,78 Штокмановское Россия 3 Медвежье Россия 1,55 Заполярное Россия 2,6 Астраханское Россия Оренбургское Россия 1,78 США 2 Нидерланды 1,65 Уникальные месторождения Манхандл - Хьюготон Слохстерен 7.1 КЛАССИФИКАЦИИ ГАЗОВ Углеводородные газы принято подразделять (классифицировать) в зависимости от происхождения на следующие группы: 1) природные (сухие), состоящие преимущественно из метана, добываемые из чисто газовых месторождений; 2) нефтяные (жирные), состоящие из метана и его низкомолекулярных гомологов (С1 - С5), добываемые попутно с нефтью; 3) газоконденсатные, добываемые из газоконденсатных месторождений; 4) искусственные, - получаемые при переработке нефти (нефтезаводские) и твердых топлив (коксовый, генераторный, доменный и др.); 5) каменноугольные газы, содержащиеся в углях. Состав газа, % об. СН4 С2Н6 С3Н8 С4Н10 C5H12+В СО2 H2S N2 Уренгойское 96,00 0,09 0,01 0 0,01 0,49 - 3,40 Медвежье 99,20 0,08 0,01 0,07 0,02 0,06 - 0,57 Ямбургское 95,20 0,04 0,01 0,00 0,01 0,30 - 4,00 Газлинское 92,70 3,20 0,90 0,47 0,13 0,10 - 2,50 Астраханское 54,15 5,54 1,68 0,93 1,57 21,55 12,60 1,98 Оренбургское 81,70 4,50 1,80 1,00 3,55 2,35 4,00 1,10 Карачаганакское 75,31 5,45 2,62 1,37 5,98 4,79 3,69 0,79 Шатлыкское 95,70 1,70 0,23 0,04 0,02 1,24 - 1,40 Туймазинское 41,00 21,00 17,40 6,80 4,60 0,10 2,00 7,10 Ишимбайское 42,40 12,00 20,50 7,20 3,10 1,00 2,80 11,00 Жирновское 82,00 6,00 3,00 3,50 1,00 5,00 - 1,50 Мyxaновскoe 30,10 20,20 23,60 10,60 4,80 1,50 2,40 6,80 Месторождение Газовое Газоконденсатное Нефтяное Газы газовых, газоконденсатных и нефтегазовых месторождений представляют собой смесь предельных углеводородов. Газ содержит также неуглеводородные компоненты: азот, диоксид углерода, сероводород, инертные газы гелий, аргон и др. Нефтяной газ является важным источником углеводородного сырья. До недавнего времени попутный газ в СССР в основном сжигался в факелах на промыслах и лишь частично использовался на местные нужды. Так, в 1991 г. при общеотраслевых ресурсах нефтяного газа в 45,1 млрд м3 было добыто 35 млрд м3 и более 10 млрд м3 сожжено в факелах и только 7,4 млрд м3 газа поставлено на переработку и компремирование. В настоящее время нефтяной газ 1 – ой ступени сепарации используется для выработки электроэнергии на промыслах, используется как топливо в технологических целях (печи подогрева нефти) или сдается на переработку на ГПЗ. Газ 2 – ой ступени сепарации, наиболее богатый тяжелыми углеводородами и поэтому являющийся ценным химическим сырьем, продолжает сжигаться на факелах. Газоконденсатные залежи - это скопления в недрах газообразных углеводородов, из которых при снижении давления выделяется жидкая углеводородная фаза - конденсат (смесь углеводородов - пентана и более высоких гомологов метана). Т.е. продукцией г/к скважины является газ и конденсат. Нефтяная залежь: газ растворен в жидкости (нефти). Г/к залежь: жидкость (углеводороды) растворены в сжатом газе. В газах этих месторождений содержатся 2-5 % и более жидких углеводородов. Содержание конденсата в газе различных газоконденсатных залежей изменяется в широких пределах: oт 5-10 см3/м3 (Рудки, Пунгинское) до 300- 500 см3/м3 (Русский Хутор, Вуктыл) и даже 1000 см3/м3 и более (Талалаевское). Продукция газовой промышленности: 1. Природные и нефтяные газы 2. Газообразные чистые углеводороды 3. Жидкие смеси углеводородов 4. Твердые продукты газопереработки ОСОБЕННОСТИ ХИМИЧЕСКОГО СОСТАВА ГАЗОВ РАЗЛИЧНОГО ПРОИСХОЖДЕНИЯ Залежь Этан, % Пропан, % Бутаны, % ТУ, % С – С С2 – С4 С2 – С4 2 4 Газовая до 5 80 - 100 1 - 15 1-5 Г/ К 5 – 15 60 - 80 15 - 35 5 - 15 НефтеГ/ К до 30 40 - 60 20 - 40 10 - 25 Нефтяная > 30 С2+В> С1 С3 > С2 С4 > С2 Для дополнительной характеристики химического состава газов и прогноза типа залежей используют различные коэффициенты: коэффициент «жирности» - отношение суммы гомологов метана к содержанию метана С2+В / СН4; коэффициент обогащенности углеводородами отношение суммы углеводородов к азоту – (СН4+С2Н6+В)/ N2; коэффициент этанизации – отношение этана к пропану С2Н6/ С3Н8: 0,3 – 1,5 газ нефтяной залежи; 1–3 газ нефтегазоконденсатной залежи; 2–6 газ газоконденсатной залежи; >5 газ газовой залежи; Классификация природных газов по содержанию полезных компонентов (В.И.Старосельский) НЕУГЛЕВОДОРОДНЫЕ КОМПОНЕНТЫ ГАЗОВ Азот – наиболее наиболее распространенный неуглеводородный компонент природного газа. Среднее содержание N2 не превышает 8 %. Сероводород – служит источником получения газовой серы. Его концентрация в природных газах 0,01 – 25 %. Месторождения сероводородсодержащих газов в России, общие разведанные запасы которых составляют более 4 трлн м3,. находятся в основном в Архангельской, Оренбургской, Астраханской и Пермской областях, а также в Башкортостане. Диоксид углерода – обычно его содержание коррелирует с содержанием сероводорода. В малосернистых и бессернистых газах концентрация СО2 не превышает 0,5 %, а в сернистых и высокосернистых она составляет 3 – 6,5 %. В группе инертных газов промышленную ценность имеет гелий. Для промышленного производства гелия используют природные и нефтяные газы с содержанием гелия не менее 0,2 – 0,3 % об. Основной источник аргона в осадочной толще – радиоактивный распад 40К. Концентрации аргона в свободных газах 0,001 – 1,0 % при фоновых значениях 0,01 – 0,02 %. Максимальные концентрации аргона и гелия обычно связаны с одними и теми же месторождениями. Поэтому высокие концентрации аргона могут служить поисковым признаком гелиеносных газов. Природные газы могут содержать ртуть в промышленных концентрациях. Содержание ртути изменяется в широких пределах: от 1∙10 -8 до 3∙10 3 г/м3, но всегда выше, чем в атмосфере. По содержанию серосодержащих компонентов горючие газы делятся на: - слабосернистые с содержанием сероводорода и тиоловой серы менее 20 и 36 мг/м3 соответственно, которые не подвергаются специальной сероочистке; - сернистые условно подразделяемые на малосернистые, сернистые и высокосернистые, содержащие сероводород и тиоловую серу более 20 и 36 мг/м3 соответственно, подлежащие обязательной очистке от сернистых соединений и переработке последних в газовую серу. Сероводород и диоксид углерода являются коррозионно-агрессивными компонентами газов, которые во влажной среде способствуют внутренней коррозии труб и оборудования и приводят к ухудшению топливных качеств газа. Поэтому эти примеси следует удалять перед транспортировкой и переработкой горючих газов. НЕФТЕЗАВОДСКИЕ ГАЗЫ При нагревании нефти до высокой температуры тяжелые углеводороды разлагаются (крекируются) с образованием легких углеводородов, в т.ч. метана и водорода. Нефтезаводские газы, получаемые в процессе крекинга (500 оС) содержат около 30 % метана и 60 % других углеводородов. В нефтезаводских газах, получаемых в процессе пиролиза (700 оС), содержание метана возрастает до 45 % за счет более глубокого разложения углеводородов. Состав углеводородных газов процессов переработки нефти, % Термический крекинг мазута под давлением замедленно е В кипящем слое Каталитический крекинг Пиролиз бензинового сырья Обычный режим Жесткий режим 0,2 0,4 1,5 2,5 16,0 8,5 5,5 - - СН4 - 2,5 4,5 12,5 6,0 29,3 - - - - С2Н4 1,8 17,0 21,5 20,0 8,0 5,0 9,5 24,5 21,0 24,5 С2Н6 - 16,0 32,5 26,5 11,0 34,4 5,0 12,5 27,0 34,0 C3H6 - 9,0 4,0 12,5 22,0 10,5 - - С3Н8 42,2 21,5 15,0 11,0 12,5 0,2 38,0 32,0 С4Н6 - - - - - 1,5 - - - - изо-С4Н8 - 4,5 2,2 5,0 6,0 1,3 - - - - н-С4Н8 - 9,8 4,4 5,0 14,0 1,2 - - - - изо-С4Н10 16,0 5,0 7,0 0,7 14,0 - 19,0 11,0 н-C4H10 40,0 14,5 8,5 4,6 4,0 0,5 20,0 14,5 - 25,8 15,1 35,7 48,0 43,8 - - - - 1,0-3,5 7 7 12 12 23 1,8 0,8 Н2 + СО2 Сумма непредельных Выход газа, % на сырье 17 77 Гидроочистка дизельных фракций Гидрокрекинг тяжелого газойля Первичная переработка нефти Каталитический риформинг - Компоненты Коксование - - 41,0 20,5 11,0 21,0 Направление использования газа зависит от его состава. Газ каталитического крекинга, богатый бутиленами и изобутаном, - наилучший вид сырья для установок каталитического алкилирования. Из газов риформинга выделяют водород, точнее - водородсодержащий газ с объемной долей водорода 75-90 %. Водородсодержащий газ используется для проведения гидрогенизационных процессов. Из нефтезаводских газов на газофракционирующих установках (ГФУ) получают следующие углеводородные фракции (чистотой 90 – 96 %): этановая фракция - сырье пиролиза, хладоагент; пропановая фракция - сырье пиролиза, хладоагент, бытовой сжиженный газ, растворитель в процессе деасфальтизации остаточных продуктов; изобутановая фракция-сырье для алкилирования и производства синтетического каучука; бутановая фракция - сырье для пиролиза, производства синтетического каучука, компонент сжиженного бытового газа, добавка к автомобильному бензину для придания ему требуемого давления паров; изопентановая фракция - сырье для производства изопренового каучука, компонент высокооктановых бензинов; пентановая фракция - сырье для процессов изомеризации и пиролиза. Из газов, содержащих непредельные углеводороды, выделяются следующие фракции: пропан-пропиленовая - сырье для производства полимербензина, фенола и ацетона, синтетических моющих средств, бутиловых спиртов; бутан-бутиленовая - сырье для алкилирования и noлимеризации, используется в производстве синтетических каучуков, присадок к маслам, метилэтилкетона, метил-трет-бутилового эфира (МТБЭ). Около 13 трлн м3 газа относится к нетрадиционным ресурсам газа на территории Сибири. Это залежи метана в Кузбассе. КАМЕННОУГОЛЬНЫЕ ГАЗЫ В углях различных марок содержится газ, основным компонентом которого является метан. Происхождение этого газа связано с преобразованием исходного растительного материала и дальнейшим метаморфизмом образующихся углей. СОСТАВ КАМЕННОУГОЛЬНЫХ ГАЗОВ По мере превращения бурых углей в каменные, а последних в антрациты уменьшается содержание кислорода, водорода до 3 - 1,5 % и других элементов и возрастает содержание углерода, в антрацитах оно достигает 99 % и более. Это обогащение углеродом связано с отщеплением боковых групп, более богатых водородом и другими элементами, что происходит на протяжении геологического времени при повышенной температуре в толщах горных пород. Отщепление боковых групп приводит к образованию метана и других газов из угольного вещества. На ранних этапах превращений угольного вещества выделяется, главным образом, углекислый газ, а на последующих - метан. Зона газового выветривания Газовая зональность угольных месторождений Глубины границ этих зон в разных месторождениях каменного угля неодинаковы и зависят от: геологических условий и интенсивности газообмена с атмосферой. Характерной в этом отношении является верхняя граница метановой зоны, где газообмен с атмосферой уже не играет существенной роли. Выше этой границы и до земной поверхности располагается зона газового выветривания. В некоторых угленосных бассейнах верхняя граница метановой зоны находится на глубине 50-200 м. Известны районы, где эта граница расположена значительно глубже (600-800 м). В Печорском бассейне зона полной деметанизации в большинстве месторождений отсутствует. Уже в самых верхних слоях каменноугольный газ содержит заметное количество метана. Собственно каменноугольными газами, т. е. образующимися при метаморфизме каменного угля, следует считать газы метановой зоны. Каменноугольные газы свободные (скопления) сорбированные (+в замкнутых порах) Состав газов в газовых скоплениях каменноугольных месторождений Глубина вскрытия газовых скоплений, м СН4 N2 СО2 ТУ Усинское 120 99,8 0,2 0 0 Воргашорское 163 99,4 0,6 0 0 340 86,0 13,0 1,0 0 502 87,0 13,0 0 0 324 99,8 0 1,2 0 614 100,0 0 0 0 - 96,2 3,8 0 - 97,0 3,0 0 350 69,0 31,0 0 0 440 83,4 16,6 0 0 Месторождение Воркутинское Нияшесырьягинское Содержание тяжелых углеводородов в газах угольных пластов Донбасса Компоненты C2H6 С3Н8 C4H10 С5Н12 С6Н14 Содержание, % об. 0,10-8,52 0,05-2,90 0-1,40 0-0,64 0-0,43 Частота встречаемости компонента, % проб 100,0 100,0 74,6 50,9 5,3 ГАЗОНОСНОСТЬ КАМЕННЫХ УГЛЕЙ Газоносность углей, т. е. количество газа, приходящееся на единицу веса угля. Нарастание газоносности горючей массы угля с глубиной (Донбасс) В порах угля газ находится в свободном состоянии, большая часть газа адсорбирована углем. Газоносность углей зависит от: давления, температуры, типа или метаморфизма угля. Из основных газообразных компонентов в наименьшей степени сорбируется азот, более значительно метан и еще более углекислый газ. Сорбция углями тяжелых углеводородов еще более высока, особенно пропана, бутана и более тяжелых. СВОЙСТВА ПРИРОДНЫХ ГАЗОВ Знание свойств и поведения природного газа позволяет рационально решать вопросы его добычи, переработки и транспорта. Наиболее важным является вопрос о фазовом состоянии, в котором находятся компоненты природного газа. Рассмотрим следующие свойства природных газов и их компонентов: молекулярная масса; плотность; вязкость; теплотворная способность; влажность. СПОСОБЫ ВЫРАЖЕНИЯ СОСТАВА СМЕСЕЙ И СВЯЗЬ МЕЖДУ НИМИ mi Массовая доля – масса i-го компонента, gi n отнесенная к общей массе системы: . mi i 1 Молярная (мольная) доля – число молей i-го компонента, отнесенное к общему числу молей в системе: n N Моль – количество вещества в граммах, численно равное его молекулярной массе. i i n . ni i 1 Число молей равно массе вещества mi mi, деленной на молекулярную массу n i . M i Mi: Тогда: N i gi M i 1 n i 1 , gi M gi gi n i 1 (i Vi) . (N i M i) i 1 i i Vi i n Объемная доля – отношение объема i-го компонента в системе к общему объему системы: Тогда: Ni M , vi vi Vi . n V i i 1 gi i 1 n i 1 gi i . По закону Авогадро при одинаковых давлении и температуре 1 моль любого газа занимает одинаковый объем: при Н.У. – 273 К и 0,101 МПа – 22,414 л, при С.У. – 293 К и 0,101 МПа – 24,055 л, отсюда для газовых смесей: vi N i , объемный состав является и молярным составом. Средняя молекулярная масса газовой смеси может быть вычислена по ее составу: n M см (уi M i), i 1 где уi = vi или Ni - объемная или мольная доля компонента; n M cм i 1 (yi M i) , 100 где yi = vi или Ni – содержание компонента в смеси в процентах. Тогда весовая доля компонента: g i yi M M Кроме того: i . см n M см 1 n i 1 , gi M М см i 1 n i (v i i) i 1 (v i i) M i . 7.2.1 ПЛОТНОСТЬ ГАЗОВ Плотность газовой смеси, как аддитивное свойство, можно рассчитать по составу газа и плотности каждого компонента: n см (yi i) , i 1 где yi = Ni или vi в долях единицы; ρi - плотность компонента газа. Плотность компонентов газа можно взять из справочников или рассчитать через молярный объем – объем 1 моля газа: При нормальных условиях (Н.У.): см o М см кг / м, 3 22 , 4 При стандартных условиях (С.У.): см М см 24 , 055 , кг / м 3 Относительная плотность газа представляет собой отношение массы газа к массе такого же объема воздуха: Г В М Г М В М Г 28 , 97 Г 1 , 293 Г, 1 , 205 где 1,293 и 1,205 плотность воздуха, кг/м3, при НУ и СУ, соответственно. 7.2.3 ВЯЗКОСТЬ ГАЗОВ Вязкостью или внутренним трением жидкости или газа называется свойство, проявляющееся в сопротивлении, которое жидкость или газ оказывает его сдвигу под влиянием действующей силы Сопротивление сдвига пропорционально сдвига, а не силе сдвига, как у твердых тел. скорости Закон течения Ньютона связывает тангенциальную силу, приложенную к жидкости (газу) и сопротивление стационарному течению: F μ S d dx d , dx производная скорости по расстоянию называется градиентом скорости; S - площадь, к которой приложена сила F. Относя силу к единице площади, F S , из уравнения Ньютона получаем тангенциальное напряжение: d dx , откуда d . dx Эта величина называется коэффициентом вязкости, коэффициентом внутреннего трения, динамической вязкостью или просто вязкостью. В системе СГС за единицу динамической вязкости принят один пуаз (П). Пуаз - это динамическая вязкость жидкости, оказывающей взаимному перемещению двух ее слоев площадью в 1 см2, находящихся друг от друга на расстоянии 1 см и перемещающихся друг относительно друга со скоростью 1 см/сек, силу сопротивления, равную 1 дине: дин с г 1 пуаз см с 2 см П. В системе СИ единица динамической вязкости имеет размерность (н∙с)/м2 или Па∙с, мПа∙с. Эта единица в 10 раз больше пуаза. 1 П = 0,1 (н∙сек)/м2. ВЯЗКОСТЬ ГАЗОВ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ Вязкость, спз 1– гелий, 2– воздух, 3– азот, 4– углекислый газ, 5- сероводород, 6- метан, 7- этилен, 8- этан, 9- пропан, 10- изобутан, 11- н-бутан, 12- н-пентан, 13- н-гексан, 14- н-гептан, 15- н-октан, 16- н-нонан, 17- н-декан Температура, оС Вязкость газообразных парафиновых углеводородов при атмосферном давлении в зависимости от молекулярной массы Вязкость, спз Относительная плотность Молекулярная масса ВЯЗКОСТЬ ГАЗОВ ПРИ ПОВЫШЕННЫХ ДАВЛЕНИЯХ Вязкость, спз Зависимость вязкости метана от давления и температуры Давление, ат Вязкость, спз Зависимость вязкости этилена от давления и температуры Давление, ат Вязкость, мпз Зависимость вязкости этана от температуры и давления Температура, оС Вязкость, спз Зависимость вязкости пропана от температуры и давления Температура, оС Вязкость, спз ВЯЗКОСТЬ ПРИРОДНЫХ ГАЗОВ а б Относительная плотность: а – 0,6; б – 0,7; в – 0,8; г – 1,0 в Температура, К г РАСЧЕТ ВЯЗКОСТИ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ В аналитическом виде зависимость вязкости индивидуальных газов и паров от температуры (при атмосферном давлении) установлена Сатерлендом: o 273 C T T C 273 3 2 , - вязкость газа при заданной температуре Т; о - вязкость того же газа при 0 К; Т - абсолютная температура газа; С - константа, зависящая от свойств газа: ССН4 = 170; СС2Н6 = 280; СС3Н8 = 318; ССО2 = 240; СN2 = 110; СВозд = 124. Вязкость смеси газов не обладает свойством аддитивности. Вязкость газовой смеси (природный газ, нефтяной газ) при атмосферном давлении можно рассчитать, если известен ее компонентный состав: n i см Ni M i 1 , n N i i M i i 1 см - вязкость смеси газов; i - вязкость i – го компонента; Ni - молярная доля i – го компонента; Mi - молярная масса i – го компонента. РАСЧЕТ ВЯЗКОСТИ ПРИ ВЫСОКОМ ДАВЛЕНИИ Отношение вязкостей, / ат Отношение вязкости при высоком давлении к вязкости при атмосферном, давлении, ат Псевдоприведенная температура, Тr Tr T Tc , pr p pc , является функцией приведенного давления и приведенной температуры: где Tr, pr – псевдоприведенные температура и давление смеси газов, Т, р и Тс, рс – рабочие и псевдокритические значения температур и давлений, соответственно. КРИТИЧЕСКИЕ И ПРИВЕДЕННЫЕ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ Критической принято называть такую температуру, выше которой газ под действием давления любого значения не может быть обращен в жидкость. Давление, необходимое для сжижения газа при критической температуре, называется критическим. Критические давление и температуру для смеси газов можно определить по формулам: Некоторые физико-химические свойства компонентов природного газа Параметр Метан Этан Пропан Молек. масса 16 30 44 Ткр, К 190,55 305,43 369,82 ркр, кгс/см2 46,95 49,76 43,33 0,6679 1,263 1,872 1,0484 0,8720 0,7649 13264 11916 12399 11321 12032 11051 Плотность при НУ, кг/м3 Вязкость при СУ, 10-6, Па∙с Теплота сгорания при 1 атм и 15 оС, ккал/кг АНАЛИЗ ГАЗОВ МЕТОДОМ ХРОМАТОГРАФИИ Газовая хроматография как эффективный метод разделения и анализа сложных смесей газов, жидкостей и твердых тел получила широкое признание в 50-х годах прошлого столетия и с тех пор непрерывно развивается и совершенствуется. Термин «хроматография» происходит от греческих слов chromatos - цвет, окраска и grapho - пишу, описываю. Любую разновидность хроматографии можно определить как динамический метод разделения смеси веществ, основанный на многократно повторяющемся процессе перераспределения компонентов между двумя несмешивающимися фазами, одна из которых является неподвижной, а другая - подвижной: неподвижная фаза - твердый адсорбент, или суспензия адсорбента в жидкости, или жидкость, наносимая на поверхность твердого носителя. подвижная фаза (газ или жидкость) протекает вдоль слоя неподвижной фазы. Принципиальная схема проведения газохроматографического анализа В хроматографическую колонку, содержащую неподвижную фазу, непрерывно подают инертный газ и в этот газ-носитель перед входом в колонку вводят пробу анализируемой смеси компонентов, например А, В и С. Вследствие специфических различий в сорбции или растворимости при движении через слой неподвижной фазы компоненты группируются в зоны. Если на выходе из колонки регистрировать изменение во времени какого-либо физического свойства газового потока, то выходная хроматографическая кривая - хроматограмма - запишется в виде ряда пиков. Хроматограмма Времена выхода компонентов, отсчитываемые от момента ввода пробы до момента регистрации вершины пика, дают качественную характеристику анализируемых веществ. Сопоставление площадей (или высот) хроматографических пиков позволяет с высокой точностью выполнять количественные определения. Принципиальная схема газового хроматографа 1 - система подготовки газов; 2 - дозирующее устройство; 3 - колонка; 4 - детектор; 5 - терморегулятор; 6 - блок питания детектора; 7 усилитель; 8 - регистратор; 9 - интегратор или система обработки сигнала детектора; 10 - измерители параметров режима хроматографа (расходов газов, температур, электрического питания детекторов). Газовые функциональные связи показаны двойной чертой, электрические - одинарной, термостатируемые элементы заключены в пунктирный контур. В практике наибольшее значение приобрел и имеет до настоящего времени самое широкое применение детектор по теплопроводности. В нем для обнаружения в потоке газа-носителя компонентов пробы используется различие теплопроводности газа-носителя и компонента. Принципиальная схема хроматографа с детектором по теплопроводности Хроматографы «Кристалл», «Кристаллюкс-4000М» Хроматограмма природного горючего газа