Питаясь солнцем: можно ли научить человека фотосинтезу? Elysia chlorotica — единственное известное животное с фотосинтезом

Вообразить, что человек полностью отказался от привычной ему пищи, перестал поглощать в себя разные вкусности и теперь просто использует в качестве источника энергии солнечный свет как обыкновенное растение — непросто.

Но сколько тогда успел бы в своей жизни человек, не теряя больше времени, чтобы покупать, готовить и употреблять органическую пищу. Наверняка все освободившееся время пошло бы на что-то более полезное и приятное.

Не так давно учёные из Морской биологической лаборатории в Америке узнали интересный факт о бриллиантово-зелёном морском слизне, форма которого схожа с листком растения и питается он солнечным светом, но на самом деле он — представитель животного мира.

Этот слизень имеет яркую окраску за счёт ДНК водорослей, которые поглощает в качестве пищи. Профессор Южного Флоридского университета Сидни К. Пирса утверждает: «Совершенно невозможно, что ДНК водоросли могут действовать внутри животной клетки. Но однако, такое происходит. И именно они дают возможность животному питаться солнечным светом». Учёные утверждают, что при желании и люди могли бы воспользоваться этим механизмом.


Видимо, эволюция человека и животных пошла не тем путём. Растения все это время стремились стать тоньше и прозрачнее, а животный мир, наоборот, толстел и становился светонепроницаемым. В то время как растения регулярно получают необходимую порцию питания от солнца, находясь на одном и том же месте, животным и людям требуется более энергетически богатая пища, так как они постоянно двигаются и перемещаются.


Однако, если сравнить ДНК человека и растений, станет понятно, что не такие уж они разные. Это сходство берет начало из времён зарождения первой жизни на Земле, и даёт возможность животному красть фотосинтез. На сегодняшний момент синтетическая биология продвинулась на совершенно новый уровень и неосуществимая, казалось бы, до сего момента идея о создании участков кожи способных к фотосинтезу теперь не кажется такой фантастической.

Со слов Пирса: « Как правило, если ген одного организма попадает в клетку иного, то он не срабатывает. Но всё-таки это работает и есть вероятность в одно мгновение изменить многое. Это быстрая эволюция


Помимо морского слизня есть и другой пример животного мира, осуществляющий фотосинтез с помощью водорослей – это кораллы. В их клетках содержатся простейшие одноклеточные динофлагелляты, способные к фотосинтезу и пятнистая саламандра, которая использует водоросли, чтобы снабжать себя солнечной энергией.


Вот только морской слизень не использует посредников для фотосинтеза. Поглотив хлоропласты водорослей, слизень покрывает ими пищеварительный тракт. Теперь полуживотное — полурастение может долгое время питаться только солнечной энергией. Но до сих пор не было известно, как же слизень сохраняет эти украденные хлоропласты.


Сейчас же Пирса и другие учёные отыскали ответ. Оказывается, слизень крадёт у водорослей не только хлоропласты, но и важный ДНК код. Он-то и помогает слизню ещё довольно долгое время производить фотосинтез, так как несёт в себе фермент, который помогает поддерживать хлоропласты.

Исследователи давно обратили внимание на «сотрудничество» пятнистой амбистомы (Ambystoma maculatum) и одноклеточных водорослей Oophilia amblystomatis. Жизненный цикл амбистомы начинается с икринки изумрудно-зеленого цвета. Такой окрас обусловлен присутствием в зародыше земноводного одноклеточных водорослей (которые, кстати, больше в природе нигде не встречаются — только в икринках некоторых видов амбистом).

Ранее считалось, что водоросли присутствуют только в желеобразном веществе икринки, окружающем зародыш, который выделяет богатые азотом и углекислым газом продукты жизнедеятельности. А водоросли перерабатывают это «сырье» в энергию, снабжая эмбрион кислородом. Однако их симбиоз оказался гораздо более тесным.

Райан Керни (Ryan Kerney) из Университета Далхаузи (Канада) показал, что водоросли обитают внутри клеток как зародыша, так и взрослого земноводного. Причем они там не только живут, но и предположительно работают, снабжая клетки амбистомы кислородом и углеводами — прямыми продуктами фотосинтеза.

Подобное взаимодействие с фотосинтезирующими организмами ранее было замечено у некоторых беспозвоночных (например, кораллов). Но приобретенная иммунная защита позвоночных обычно уничтожает весь чужеродный биологический материал, попавший во внутреннюю среду организма. Поэтому считалось, что «система безопасности» не позволит внутриклеточным симбионтам спокойно жить и трудиться. Но в данном случае либо клетки амбистомы как-то «отключили» защитные механизмы, либо водоросли нашли способ их обойти.

На изображениях, полученных с помощью просвечивающего электронного микроскопа (ПЭМ), видно, что вокруг водоросли, обитающей внутри клетки амбистомы, собирается несколько митохондрий . Митохондрии — это внутриклеточные «электростанции», превращающие кислород и продукты глюкозы в АТФ , универсальный источник энергии. Предположительно, митохондрии подбираются к водоросли неспроста, рассчитывая воспользоваться продуктами фотосинтеза — кислородом и углеводами.

Каким же образом водоросли попадают внутрь эмбриона? Вероятно, это происходит в то время, когда начинает формироваться нервная система будущей амбистомы. Видео, позволившее увидеть этот промежуток жизни икринки «в ускоренном воспроизведении», демонстрирует ярко-зеленую «вспышку» рядом с зародышем. Эта «вспышка» — не что иное, как резкий рост числа водорослей, вызванный, вероятно, «выбросом» богатых азотом продуктов жизнедеятельности эмбриона. А если есть выход для соединений азота — значит, есть и вход для многочисленных водорослей, которым некоторые из них не преминут воспользоваться.

Такая схема объясняет, почему ранее исследователям не удавалось обнаружить водоросли в клетках эмбрионов: они изучали икринки, еще не прошедшие стадию «зеленой вспышки». Количество водорослей внутри клеток земноводного в это время было очень небольшим. Однако нельзя утверждать, что их не было вовсе.

Одно из любопытных открытий Керни — присутствие водорослей в яйцеводах взрослых самок Ambystoma maculatum, где формируются желеобразные «мешки», окружающие эмбрион. Этот факт указывает на возможность передачи водоросли-симбионта от матери к потомству.

Амбистомы способны вырастить утраченную конечность. Почти все клетки взрослого земноводного сохраняют плюрипотентность — способность делиться и превращаться в другие типы клеток. Вполне возможно, что некоторые клетки Ambystoma maculatum выработали способность принимать водоросли-симбионты благодаря тому, что их процессы «самоидентификации» идут не так, как у клеток других животных.

Экология познания: Если вы думаете, то так не бывает – вы ошибаетесь. Похоже, оскорбление в виде: «Ты – овощ», приобретает особый оттенок в свете данного материала. Существует несколько видов слизняков, которые имеют хлорофилл в своем организме и способны создавать питание из солнечного света

Если вы думаете, то так не бывает – вы ошибаетесь. Похоже, оскорбление в виде: «Ты – овощ», приобретает особый оттенок в свете данного материала. Существует несколько видов слизняков, которые имеют хлорофилл в своем организме и способны создавать питание из солнечного света.

Хлорофилл у этих слизняков отсутствует при рождении. Он приобретается организмами со временем. Это происходит благодаря поеданию большого количества растений. Только поедание здесь выглядит несколько иначе. Вместо традиционного переваривания, полученный хлорофилл, слизняки делают частью своих клеток. А некоторые слизняки вообще способны даже горизонтально переносить ДНК водорослей в свой организм. Ну, а дальше дело техники. Нужно просто расположиться на солнце и ждать прилива энергии

Так как же они называются?

Elysia chlorotica - вид небольших слизней, относящийся к морским брюхоногим моллюскам. Это первое известное учёным животное, способное, подобно растениям, осуществлять процесс фотосинтеза. Своих хлоропластов у него нет, поэтому для осуществления фотосинтеза он использует хлоропласты морской водоросли Vaucheria litorea, которую употребляет в пищу. Геном слизня кодирует некоторые белки, необходимые хлоропластам для фотосинтеза.

Взрослые особи Elysia chlorotica обычно имеют ярко-зелёную окраску благодаря присутствию в клетках хлоропластов водоросли Vaucheria litorea. Иногда встречаются морские слизни красноватых или сероватых оттенков, полагают, что это зависит от количества хлорофилла в клетках. Молодые особи, которые ещё не употребляли водоросли, имеют коричневую с красными пятнами окраску из-за отсутствия хлоропластов. Морские слизни имеют большие боковые параподии, напоминающие мантию, которые могут сворачивать, окружая ими своё тело. В длину порой достигают 60 мм, но средний их размер составляет 20–30 мм.

Elysia chlorotica встречается вдоль атлантического побережья США и Канады. Морской слизень обитает в соленых болотах, заводях и мелководных бухтах на глубине до 0,5 метра.

Слизень Elysia chlorotica питается водорослями Vaucheria litorea. Он прокалывает оболочку клетки своей радулой и высасывает её содержимое. Почти всё содержимое клетки слизень переваривает, но вот хлоропласты водоросли оставляет нетронутыми, ассимилируя их в собственные клетки. Накопление слизнем хлоропластов начинается сразу после метаморфоза личинки во взрослую особь, когда он переходит на питание водорослями.

Молодые слизни имеют коричневую окраску с красными пятнами, питание водорослями окрашивает их в зелёный цвет - это вызвано постепенным распределением хлоропластов по очень разветвлённому пищеварительному тракту. Сначала молодые слизни непрерывно питаются водорослями, но со временем хлоропласты накапливаются, позволяя слизню оставаться зелёным и без употребления в пищу Vaucheria litorea. Более того, включается процесс фотосинтеза, и слизень переходит на «растительный» образ жизни, подпитываясь солнечной энергией.

Ассимилированные Elysia chlorotica хлоропласты осуществляют фотосинтез, что позволяет слизню - в период, когда водоросли недоступны, - многие месяцы жить за счёт глюкозы, полученной в результате фотосинтеза.

Хлоропласты в клетках слизня жизнеспособны и функционируют девять–десять месяцев (что значительно превышает возможные скроки/Alex). Но ДНК хлоропластов кодирует только 10 % необходимых им белков. В растениях хлоропласты - внутриклеточные органеллы - многие белки получают из цитоплазмы клетки, эти белки кодируются ядерным геномом клетки растения. Возникла гипотеза, что геном Elysia chlorotica тоже должен обладать генами, обеспечивающими фотосинтез. В геноме слизня был обнаружен ген, гомологичный ядерному гену водорослей psbO, кодирующий белок фотосистемы II. Было сделано предположение, что этот ген получен слизнем в результате горизонтального переноса генов. Возможно, ядерный геном Elysia chlorotica содержит и другие гены, кодирующие белки, принимающие участие в фотосинтезе.

Взрослые особи Elysia chlorotica являются синхронными гермафродитами - каждое половозрелое животное производит и сперматозоиды и яйцеклетки. Самооплодотворение не распространено у этого вида, обычно происходит перекрестное спаривание. После того, как яйцеклетки оплодотворены, морской слизень склеивает их в длинные нити.

Жизненный цикл морского слизня длится девять–десять месяцев, и все взрослые особи погибают ежегодно и синхронно после откладывания яиц. Учёные установили, что этот «феномен запрограммированной смерти» обусловлен деятельностью живущего в клетках Elysia chlorotica вируса.

Некоторые виды животных переняли способности растений, чтобы иметь преимущества перед конкурентами. Природа поражает своей фантазией — от тли с солнечными батареями до водорослей, живущих в саламандре, — это живые уроки биологии, которые могут быть использованы для пояснения работы иммунной системы, а также усовершенствования генотерапии.

Симбиоз

СИМБИОЗ (от греч. symbiosis - сожительство) — тесное сожительство организмов двух или более видов, к-рое, как правило, стало необходимым и полезным для обоих партнеров (симбионтов). С. у морских животных открыл К. Мёбиус (1877).

Если вы не обладаете воможностями растений, то лучшим решением станут симбиотические отношения с фотосинтезирующими микроорганизмами. Этот метод используют многие виды кораллов: они являются скелетом и домом, а микробы зооксантеллы запасают энергию.

Следующий пример: симбиоз водорослей и саламандры. Каждую весну на северо-востоке США, пятнистые саламандры проснувшись, собираются в водоемах, чтобы размножаться. «После оргий, они откладывают кладки яиц», говорит Райан Керни, изучающий земноводных в колледже Геттисберга. «Несколько дней спустя, все яйца меняют оттенок и становятся слегка зелеными».

Дело в том, что в этих яйцах живет определенный тип водорослей, он приносит небольшую пользу для развивающегося эмбриона за счет увеличения концентрации кислорода в клетках. Кенни обнаружил, что на самом деле эти водоросли находятся внутри клеток эмбриона.

Морской слизняк и солнечные батареи

Среди морских слизняков Sacoglossa есть несколько видов, которые воруют хлоропласты у водорослей и потом фотосинтезируют самостоятельно. Это очень странно, так как хлоропласты нуждаются в условиях, созданных клеткой водоросли или растения.

Существует вид морского слизня (Elysia chlorotica), которому нужно питаться только в очень раннем возрасте. Он съедает водоросли, «воруя» их способность использовать энергию солнца, а затем переходит на автотрофное питание на протяжении всей своей 10-месячной жизни.

Сидни Пирс, биолог из Университета Южной Флориды, провел большую часть последних четырех лет в поисках генов, которые могли бы объяснить, как эти хлоропласты функционируют. В клетках Elysia chlorotica, он нашел около 50 генов, участвующих в процессе фотосинтеза.

Как передались гены от водорослей слизню? «Если бы я бы знал это, то понял как работает генотерапия, тогда я был бы миллионером», — сказал Пирс. Генотерапия основана на встроении генов в ДНК человека, и имеет потенциал для лечения всего — от рака до слепоты. Это пока только фантазия, так как чужеродная ДНК отторгается иммунной системой человека.

Исследователи Мария Румфо (университет Коннектикута), и Хайке Вигеле (Центр исследования молекулярного биоразнообразия, Германия) подвергают критике результаты Пирса. Они не уверены в том, что слизень сам встроил найденные гены в свою ДНК. Кроме того, необходимо больше, чем 50 генов для работы этих хлоропластов.

Вигеле считает, что ответ кроется в поведении слизня, а не его генах. Эти слизни защищают хлоропласты с помощью своеобразных штор, называемых параподией. Эти хлоропласты-соседи также уникальны, поскольку работают дольше других.

Тля

Гороховая тля не нуждается в воровстве для получения энергии от солнца.

В исследовании, опубликованном ранее в этом году в журнале «Научные доклады» установлено, что на свету гороховая тля может производить аденозинтрифосфат, или АТФ — аккумулятор энергии живых организмов (животные клетки обычно преобразовывать в АТФ пищу, в то время как растения производят АТФ в результате фотосинтеза).

Гороховая тля необычна и тем, что способна синтезировать каротиноиды, которые, как правило, производится растениями и микроорганизмами. Эти каротиноиды определяют цвет тли и также способны производить ATФ из солнечного света (Алан Робичон, Sophia Agrobiotech Institute, Франция).

Какую же пользу может извлечь человек, изучая эти уникальные способности животных? Сможем ли мы когда-нибудь использовать эти методы? Это покажет время…

Дуглас Мейн, livescience.com