Чем отличается демографическая структура популяции от пространственной. Динамика популяций демографическая структура популяции и ее. Социальная и демографическая структура германского общества

Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела - пойкилотермные и организмы с постоянной температурой тела - гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов - редко выше 40-45 оС. Некоторые цианобактерии и бактерии обитают при температурах 70-90 оС, в горячих источниках могут жить и некоторые моллюски (до 53 оС). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 оС). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 oС.

Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных - внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 oС, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры - так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.

У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 oС и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 oС, необходимая для развития личинок).

Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).

Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих - гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих - несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.

Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных - потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц - только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.

Обзор геосфер Земли. Взаимодействие живого и косного вещества в биосфере.

Геосферы - (от греч. гео – Земля, сфера – шар) – географические концентрические оболочки (сплошные или прерывистые), из которых состоит планета Земля.

Выделяются следующие геосферы: магнитосфера, атмосфера, гидросфера, литосфера, земная кора, мантия и ядро Земли. Ядро Земли делится на внешнее ядро (жидкое) и центральное – субъядро (твёрдое).

Геосферы условно делятся на базовые или главные (литосфера, атмосфера и гидросфера и другие), а также относительно автономно развивающиеся вторичные геосферы: педосфера, антропосфера, социосфера и ноосфера. Область обитания организмов, включающая нижнюю часть атмосферы, всю гидросферу и верхнюю часть земной коры, называется биосферой. Криосфера характеризуется отрицательной или нулевой температурой, при которых вода, содержащаяся в парообразном, свободном или химически и физически связанном с другими компонентами виде, может существовать в твёрдой фазе (лёд, снег, иней и другие).

Статус геосферы им придаётся лишь исходя из значения в жизни человека на Земле, соизмеримого с ролью первичных геосфер.

Каждая из перечисленных выше геосфер изучается отдельной наукой или набором отдельных наук, изучающих каждую сферу на разных системных уровнях.

1. Состав основных геосфер земли

2. Общая характеристика основных геосфер земли

Состав основных геосфер земли

Формирование Земли сопровождалось дифференциацией вещества, результатом которой стало разделение Земли на концентрически расположенные слои (геосферы), различающиеся химическим составом, агрегатным состоянием и физическими свойствами.

В центре образовалось ядро Земли, окруженное мантией. Из наиболее легких компонентов вещества, выделившихся из мантии, возникла расположенная над мантией земная кора – «твердая» Земля, заключающая в себе почти всю массу планеты. Далее возникли водная и воздушная оболочки нашей планеты.

Таким образом, можно выделить следующий ряд геосфер, из которых состоит Земля:

· мантия;

· литосфера;

· гидросфера;

· атмосфера;

· магнитосфера.

Общая характеристика основных геосфер земли

К настоящему времени человечеством получено множество данных, позволивших с высокой степенью достоверности установить характеристики основных геосфер земли.

Ядро Земли – занимает центральную область нашей планеты. Это самая глубокая геосфера. Средний радиус ядра около 3500 км, располагается оно глубже 2900 км. Состоит из двух частей – большого внешнего и малого внутреннего ядра. Природа внутреннего ядра Земли с глубины 5000 км остается загадкой. Это шар диаметром 2200 км, который, как полагают ученые, состоит из железа и никеля и имеет температуру плавления порядка 4500 °С.

Внешнее ядро представляет собой жидкость – расплавленное железо с примесью никеля и серы. Давление в этом слое меньше. Внешнее ядро – шаровой слой толщиной 2200 км.

Мантия – наиболее мощная оболочка Земли, занимающая 2/3 ее массы и большую часть объема. Она также существует в виде двух шаровых слоев – нижней и верхней мантии. Толщина нижней части мантии – 2000 км, верхней – 900 км.

Благодаря высокому давлению вещество мантии, скорее всего, находится в кристаллическом состоянии. Температура мантии составляет около 2500 ° С. Именно высокие давления обусловили такое агрегатное состояние вещества, в ином случае указанная температура привела бы к его расплавлению.

В расплавленном состоянии находится астеносфера – нижняя часть верхней мантии. Это подстилающий верхнюю мантию и литосферу слой. В целом же верхняя мантия обладает интересной особенностью: по отношению к кратковременным нагрузкам она ведет себя как жесткий материал, а по отношению к длительным нагрузкам – как пластичный.

Литосфера – это земная кора с частью подстилающей ее мантии, которая образует слой толщиной порядка 100 км. Земная кора обладает высокой степенью жесткости, но и большой хрупкостью. В верхней части она слагается гранитами, в нижней – базальтами.

Геологические особенности коры определяются совместными действиями на нее атмосферы, гидросферы и биосферы – трех самых внешних оболочек планеты. Состав коры и внешних оболочек непрерывно обновляется.

На поверхности литосферы в результате совокупной деятельности ряда факторов возникает почва – это сложнейшая система, стремящаяся к равновесному взаимодействию с окружающей средой.

Гидросфера – водная оболочка Земли представлена на нашей планете Мировым океаном, пресными водами рек и озер, ледниковыми и подземными водами. Общие запасы воды на Земле составляют 1,5 млрд км 3 . Из этого количества 97 % приходится на соленую морскую воду, 2 % составляет замерзшая вода ледников и 1 % – пресная вода.

Гидросфера – это сплошная оболочка Земли, так как моря и океаны переходят в подземные воды на суше, а между сушей и морем идет постоянный круговорот воды, ежегодный объем которого составляет 100 тыс. км 3 .

Воде свойственны высокая теплоемкость, теплота плавления и испарения. Вода является хорошим растворителем, поэтому в ней содержится множество химическим элементов и соедине­ний, необходимых для поддержания жизни.

Большую часть поверхности Земли занимает Мировой океан (71 % поверхности планеты). Он окружает материки (Евразию, Африку, Северную и Южную Америку, Австралию и Антарктиду) и острова. Океан делится материками на четыре части: Тихий (50 % площади Мирового океана), Атлантический (25 %), Индийский (21 %) и Северный Ледовитый (4 %) океаны.

Важной частью гидросферы Земли являются реки – водные потоки, текущие в естественных руслах и питающиеся за счет поверхностного и подземного стока с их бассейнов.

Озера, болота, подземные воды также часть гидросферы Земли.

Ледники, образующие ледяную оболочку Земли (криосферу), также являются частью гидросферы нашей планеты. Они занимают 1/10 часть поверхности Земли. Именно в них содержатся основные запасы пресной воды (3/4).

Атмосфера – это воздушная оболочка Земли, окружающая ее и вращающаяся вместе с ней. Она состоит из воздуха – смеси газов (азота, кислорода, инертных газов, водорода, углекислого газа, паров воды). Кроме того, воздух содержит большое количество пыли и различных примесей, порождаемых геохимическими и биологическими процессами на поверхности планеты.

Атмосфера Земли имеет слоистое строение, причем слои отличаются по физическим и химическим свойствам. Важнейшими из них являются температура и давление, изменение которых лежит в основе выделения атмосферных слоев. Таким образом, в атмосфере Земли выделяют: тропосферу, стратосферу, ионосферу, мезосферу, термосферу и экзосферу.

Тропосфера – это нижний слой атмосферы, определяющий погоду на нашей планете. Имеет постоянную температуру. Его толщина – 10–18 км. С высотой падают давление и температура. В тропосфере содержится основное количество водяных паров, образуются облака и формируются все виды осадков.

Толщина стратосферы доходит до 50 км. Наблюдается повышение температуры из-за поглощения солнечного излучения озоном.

Ионосфера – эта часть атмосферы, начинающаяся с высоты 50 км и состоящая из ионов (электрически заряженных частиц воздуха). Ионизация воздуха происходит под действием Солнца.

С высоты 80 км начинается мезосфера , роль которой состоит в поглощении ультрафиолетовой радиации Солнца озоном, водяным паром и углекислым газом.

На высоте 90–400 км находится термосфера . В ней происходят основные процессы поглощения и преобразования солнечного ультрафиолетового и рентгеновского излучений.

Верхняя область атмосферы, простирающаяся от 450–800 км до 2000–3000 км, называется экзосферой. В ней содержатся атомарный кислород, гелий и водород. Часть этих элементов постоянно уходит в мировое пространство.

Магнитосфера – это внешняя и наиболее протяженная оболочка Земли. Магнитосфера представляет собой область, физические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц космического происхождения. Образует магнитный хвост Земли. В ней находятся радиационные пояса.

Живое вещество

Живое вещество есть совокупность всех организмов Земли, находящихся на ней в данный период времени. В целом эта совокупность играет большую роль, хотя, если говорить о воздействии человека на планетные процессы, то роль отдельной личности может быть ничтожной.
Живое вещество на Земле можно рассматривать как совокупность средних живых организмов, относящихся ко всем различным группам. Каждая из таких групп состоит из однородного живого вещества. Живое вещество существует только в биосфере. Как уже отмечалось, биосфера включает в себя тропосферу, океаны и тонкую пленку в континентальной области, уходящую на глубину не менее чем на 3 км. Человек стремится увеличить размеры биосферы.
Биосферу обычно определяют как область жизни. Но ее можно (и, вероятно, даже более точно), рассматривать как оболочку, в которой происходят изменения, вызванные попадающим на Землю солнечным излучением.
В.И. Вернадский указывал на необратимость процессов жизни, увеличение ее свободной энергии и выраженной дисимметрии в строении живого вещества: “Ди-симметрия выражена как особым характером симметрии пространства, занятого живым веществом, так и особенно явным несоответствием, скорее неравенством, - между “правым” и “левым” характером явлений (например, обобщения Пастера)”. Развивая дальше понятие о принципиальном значении явления дисимметрии, В.И. Вернадский пишет: “Необходимо подчеркнуть основной вывод: явления жизни позволяют здесь идти в изучении пространства и Космоса так далеко, как это пока невозможно никаким другим путем. В этом проявляется космичность жизни. Это явно видел Пастер”.
Итак, В.И. Вернадским осуществлен первый шаг в изменении современной научной картины Вселенной, который характеризуется:
- введением живого вещества;
- определением его как явления планетарного или космического.

Косное и живое вещества

Вещество, составляющее биосферу, существенно неоднородно. Поэтому различают косное и живое вещества. Косное вещество преобладает по массе и объему. Происходит непрерывная миграция атомов косного вещества биосферы в живое и обратно. Все исследуемые объекты в биосфере следует называть естественными телами биосферы. А среди них можно различать тела живые, а также косные или биокосные, как, например, почва или озерная вода.
В.И. Вернадский подчеркивал принципиальное значение связей живого и косного вещества, фундаментальный характер биологического единства земных естествен-ноприродных процессов: “Между косным и живым веществом есть непрерывная, никогда не прекращающаяся связь, которая может быть выражена как непрерывный биогенный ток атомов из живого вещества в косное вещество биосферы и обратно. Этот биогенный ток атомов вызывается живым веществом. Он выражается в непрекращающемся никогда дыхании, размножении и т.п.”. В этом постоянном обмене, рассматривая взаимодействие живого и косного вещества в космопланетарном аспекте, В.И. Вернадский выделил несколько основополагающих свойств, среди которых - два биохимических принципа:
1. Геохимическая биогенная энергия стремится в биосфере к максимальному проявлению.
2. При эволюции видов выживают те организмы, которые своей жизнью увеличивают биогенную геохимическую энергию.
Важная сторона естественнонаучных обобщений, сделанных В.И. Вернадским, состояла в том, что он постоянно поддерживал космические, “вселенские” аспекты процессов и явлений, происходящих в живом веществе. Перечисляя планетарные свойства жизни, В.И. Вернадский, наряду с первым и вторым биохимическими принципами, указывал также, что “живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей”. Обмен этот проявляется, в частности, в том, что живое вещество “создается и поддерживается на нашей планете космической энергией Солнца”.

Численное соотношение различных категорий организмов в составе населения рассматривается как демографическая структура популяции. При этом в первую очередь имеется в виду соотношение половых и возрастных групп; изменения этих показателей существенным образом влияют на темпы репродукции, а соответственно на общую численность популяции и ее изменения во времени.[ ...]

Возрастные аспекты ценопопуляций растений. В составе ценопопуляций возрастая структура выражена несколькими периодами, включающими ряд определенных возрастных состояний организмов (табл. 12.1).[ ...]

В реальных популяциях границы календарного возраста двух смежных возрастных состояний в какой-то степени перекрываются. Это определяется тем, что индивидуальный ход онтогенеза у отдельных организмов не совпадает и конкретные особи могут достигать определенного возрастного состояния в разные календарные сроки. Функционально же особи данного возрастного состояния сходны. Набор возрастных состояний в популяции определяет интенсивность репродукции, захвата пространства, процессов самоизреживания и т. п. В целом в зависимости от возрастного состава (возрастного спектра) популяция характеризуется определенными свойствами, отражающими ее онтогенетическое состояние как целостной системы.[ ...]

В нормальных дефинитивных (достигших равновесного состояния) ценопопуляциях характер базового возрастного спектра определяется особенностями биологии вида (в частности, общей продолжительностью онтогенеза и длительностью отдельных возрастных состояний), способами самоподцержания, способностью формировать почвенный запас семян и др. Все эти особенности накладывают свой отпечаток на соотношение различных возрастных групп в составе популяции разных видов (рис. 12.1).[ ...]

Возрастная структура популяций животных. Онтогенетические отличия морфологии, физиологии и функциональной роли в популяции свойственны и возрастным группам в популяциях животных. Особенно отчетливо возрастные отличия проявляются у видов, развитие которых проходит с метаморфозом, включающим одну или несколько предимагинальных фаз. В этом случае отдельные возрастные группы могут коренным образом отличаться по особенностям биологии и занимать разное положение в структуре биоценоза. Не представляет исключения и такой вариант развитая, при котором разные стадии онтогенеза обитают в различных средах (например, стрекозы или амфибии).[ ...]

У видов, размножающихся раз в году, когорты выражены четко, а общий спектр возрастного состава зависит от сроков достижения половозрелости и от общей продолжительности жизни, свойственной данному виду. Так, у майских хрущей МеЫоШМ размножение происходит один раз за сезон, после чего самки погибают. При таком ходе онтогенеза понятия «когорта» и «генерация» совпадают и популяция состоит из четырех генераций соответственно четырехлетнему сроку развития обитающих в почве личинок. В других случаях когорты (особи одного времени рождения) могут состоять из представителей одной генерации (последовательные выводки одной когорты родителей), а могут иметь более сложный состав. Так, у мелких грызунов во второй половине репродуктивного сезона в размножение вступают зверьки рождения данного года; соответственно «осенние» когорты состоят из повторных выводков перезимовавших животных и из потомства их детей, т. е. включают по меньшей мере представителей двух поколений (генераций).[ ...]

Как и в популяциях растений, интенсивность размножения и темпы роста популяции в каждый данный момент опред еляются долей особей, находящихся в возрасте активной репродукции; процент неполовозрелых животных в составе популяции отражает потенциальные возможности воспроизводственной функции на ближайшее будущее. Таким образом, знание возрастного состава популяции на фоне видоспецифических сроков развития и созревания может быть основой прогнозирования темпов роста популяций экономически важных видов.[ ...]

Для очень многих видов характерна повышенная смертность в младших возрастных группах (или в предимагинальных стадиях развития). У таких видов кривая выживания демонстрирует резкое падение в облает младших возрастов, которое вскоре сменяется постепенным понижением, отражающим низкую и относительно равномерную смертность животных, переживших «критический» возраст (рис. 12.3, III). При равномерном распределении смертности по возрастам, т. е. в случае независимости причин смертности от специфических возрастных свойств, характер выживания в идеале представляется в виде диагонально снижающейся прямой линии (рис. 12.3, II); приближающийся к этому типу характер выживания свойствен в первую очередь видам, развитие которых идет без метаморфоза при достаточной степени самостоятельности и устойчивости рождающегося потомства, хотя идеально равномерной смертности, по-видимому, не существует2. Во многих случаях видовая кривая выживания характеризуется комбинацией разных частей теоретических кривых (AM. Гиляров, 1990).[ ...]

Анализ параметров выживания и смертности в разных возрастных группах открывает возможность расчета ожидаемой продолжительности жизни особей данной возрастной когорты. Составленные по основным демографическим параметрам таблицы выживания (life tables) могут служить основой анализа и прогнозирования популяционной динамики (табл. 12.2). При этом анализ возрастной динамики может быть основан на последовательных учетах численности отдельных возрастных когорт (как в приведенной таблице) или на статистическом анализе всех возрастных групп, существующих в данной популяции в период наблюдений (AM. Гиляров, 1990).

Демографическая структура популяций

ВСПОМНИТЕ Метаморфоз 3абота о потомстве

Описание полового и возрастного состава популяций называютдемографией (ʼʼдемосʼʼ -народ, население, ʼʼграфоʼʼ - пишу, описываю).

Популяции состоят из особей разного пола и возраста. Соотношение возрастных и половых групп определяет многое в общей жизнеспособности и темпах роста популяции и является важной характеристикой её структуры.

У любой особи с возрастом закономерно изменяются характер связей со средой и устойчивость к действию отдельных факторов. У некоторых видов эти возрастные различия выражены очень резко, происходит даже смена сред обитания, характера питания, способов передвижения. Личинки стрекозы-коромысла - типично водные жители с реактивным типом движения в воде, а взрослые наземно-воздушные, с машущим полетом. Бабочки после метаморфоза переходят от грызущего типа питания к сосущему, от ползания к полету и т. п. У всех видов в ходе развития особей есть более уязвимые стадии и более устойчивые. Известно, что проростки растений, детеныши животных более чувствительны к неблагоприятным условиям, чем взрослые сформировавшиеся организмы. Самцы и самки также могут различаться по экологическим особенностям. Например, самцы кровососущих комаров вовсе не нуждаются в крови позвоночных животных, а сосут нектар цветов.

Возрастная структура популяц ии, т. е. соотношение в ней разных возрастных групп, зависит от двух причин˸ от особенностей жизненного цикла вида и от внешних условий.

Есть виды с очень простой возрастной структурой популяций, которые состоят практически из представителей одного возраста. Например, все однолетние растения весной находятся в проростках, затем примерно одновременно зацветают, дают семена и к осени отмирают. Среди животных также есть виды с однородными по возрасту популяциями, например, многие виды саранчи весной представлены личинками, ранним летом - бескрылыми неполовозрелыми особями, затем - крылатыми формами, а глубокой осенью - только яйцами, запрятанными в почве в кубышки.

У таких видов представители разных поколений никогда не встречаются друг с другом. Численность их очень изменчива исходя из внешних условий. Если в уязвимый период развития наступают заморозки или засуха, происходит массовая гибель. В благоприятной же ситуации популяция может дать взрыв численности. Для видов с про-

стой возрастной структурой изменения плотности популяции в сотни и тысячи раз - нормальное экологическое явление.

Сложная возрастная структура популяций возникает тогда, когда в ней представлены все возрастные группы, одновременно живут несколько поколений, взрослые особи размножаются многократно и имеют достаточно большую продолжительность жизни. В стадах слонов или обезьян-павианов, например, есть и новорожденные, и подростки, и молодые крепнущие животные, и размножающиеся самки и самцы, и старые особи. Такие популяции не подвержены резким колебаниям численности. Критические внешние условия могут изменить их возрастной состав за счёт гибели наиболее слабых, но самые устойчивые возрастные группы выживают и затем восстанавливают структуру популяции.

Демографическая структура популяций - понятие и виды. Классификация и особенности категории "Демографическая структура популяций" 2015, 2017-2018.

ДЕМОГРАФИЧЕСКАЯ СТРУКТУРА ПОПУЛЯЦИИ

ДЕМОГРАФИЧЕСКАЯ СТРУКТУРА ПОПУЛЯЦИИ генетически обусловленная структура популяции, специфичная для каждого вида. Демографическая структура популяции включает в себя возрастную и половую структуры. По сравнению с последней возрастная структура оказывает влияние как на рождаемость, так и на смертность. В каждой популяции можно выделить три экологии, возраста (Bodenheimer, 1938): 1) пререпродуктивный (до половой зрелости), 2) репродуктивный (половая зрелость),3) пострепродуктивный (доминирование старых, не способных к размножению особей). Длительность этих возрастов относительно продолжительности жизни у разных организмов сильно варьирует. А. Лотка (1925) показал, что в популяции имеет место тенденция к установлению стабильной возрастной структуры и что если это стабильное состояние из-за временного притока или оттока особей в др. популяцию нарушается, то при восстановлении нормальных условий возрастная структура вновь будет стремиться достигнуть прежнего состояния; более устойчивые изменения должны привести к возникновению нового стабильного распределения возрастов. Наибольший успех в природе будет иметь та популяция , которая представлена всеми возрастными группами в наиболее оптимальном соотношении. Соотношение различных возрастных групп в популяции (а также степень благоприятности среды) определяет ее способность к размножению в данный момент и показывает, что можно ожидать в будущем. Обычно в быстро растущих популяциях значительную часть составляют молодые особи, в стабильных популяциях распределение возрастных групп более равномерно, а в популяциях с уменьшающейся численностью больше старых особей. Однако возрастная структура популяции может меняться и без изменения ее численности. Для каждой популяции характерна некоторая нормальная, или стабильная, возрастная структура, к достижению которой направлены все ее усилия. Соотношение возрастных групп (классов) графически обычно представляется в виде возрастных пирамид . Половая структура популяции определяется по формуле:

где n о - число взрослых самок; N - численность популяции. См. также Демографические таблицы . Демографический коэффициент .

Экологический энциклопедический словарь. - Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .

ДЕМОГРАФИЧЕСКАЯ СТРУКТУРА ПОПУЛЯЦИИ [от гр. demos - народ и grapho - пишу] - генетически обусловленное для каждого вида соотношение полов и возрастных групп. Последнее графически обычно представляется в виде возрастных пирамид.

Экологический словарь , 2001


Смотреть что такое "ДЕМОГРАФИЧЕСКАЯ СТРУКТУРА ПОПУЛЯЦИИ" в других словарях:

    Характер распределения особей в пространстве, а также по половым, возрастным и другим морфологическими и физиологическим признакам. Пространственная структура популяции характеризует обычно типы распределения особей в биотопах (дисперсию) и в… … Экологический словарь

    Экологические параметры популяции, характеризующие ее количественное состояние в данный момент (численность, плотность, популяционный ареал, демографическая структура, тип пространственного распределения и др.). Экологический энциклопедический… … Экологический словарь

    - (от лат. senilis стареющий, старческий), стареющие особи. См. также Демографическая структура популяции. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989. Сенильные особи (от… … Экологический словарь

    Демография - (Demography) Содержание Содержание 1. История формирования демографии Формирование демографических знаний (XVI — начало XIX века) Возникновение демографической науки (XIX век) Современное развитие (середина XX — до сегодняшнего дня) 2 … Энциклопедия инвестора

    Статистика - (Statistics) Статистика это общетеоретическая наука, изучающая количественные изменения в явлениях и процессах. Государственная статистика, службы статистики, Росстат (Госкомстат), статистические данные, статистика запросов, статистика продаж,… … Энциклопедия инвестора

    У этого термина существуют и другие значения, см. Отображение (значения). Логистическое отображение (также квадратичное отображение или отображение Фейгенбаума) это полиномиальное отображение, которое описывает, как меняется численность… … Википедия

    ДЕМОГРАФИЯ - (от греч. demos народ и grapho пишу), наука о закономерностях воспроиз ва нас. в обществ. историч. обусловленности этого процесса. Термин Д. появился в 1855 в названии книги франц. учёного А. Гийяра Элементы статистики человека, или Сравнительная … Демографический энциклопедический словарь

    Европа - (Europe) Европа – это плотнонаселенная высокоурбанизированная часть света названная в честь мифологической богини, образующая вместе с Азией континент Евразия и имеющая площадь около 10,5 миллионов км² (примерно 2 % от общей площади Земли) и … Энциклопедия инвестора

    Теории происхождения государства теории, объясняющие смысл и характер изменений, условия и причины возникновения государства. Входят в предмет исследования науки [[теория государства и права Содержание 1 Общая характеристика … Википедия

    Теории происхождения государства теории, объясняющие смысл и характер изменений, условия и причины возникновения государства. Входят в предмет исследования науки теория государства и права Содержание 1 Общая характеристика … Википедия

Демографическая структура популяции и ее динамика Половое размножение возникало многократно, Y(Z) – хромосома не менее пяти раз. Первичное соотношение полов. Определяется генетическими механизмами. Объяснение Фишера

Гомогаметный и гетерогаметный пол (самцы (XY) у большинства, самки (WZ) у птиц, бабочек). Тритоны: у гребенчатого гомогаметны – самки, обыкновенного – самцы.

Гаплодиплоидия у перепончатокрылых и других (у некоторых паутинных клещей, клопов, короедов и коловраток) 2 n 2 n n семяприёмник

У лесного лемминга самки ХХ и ХY (с определенной Х) У копытного – самки ХХ и ХО (с определенной Х) У обыкновенной слепушонки XX имеют оба пола У горной слепушонки XO имеют оба пола

Вторичное соотношение полов избирательность яйцеклеток, особенности среды матки, влияющие на вероятность оплодотворения, различия в частоте имплантации температурное определение пола детенышей Пример: 85% самцов у сайгаков после массового истребления последних Третичное соотношение полов Устанавливается в результате дифференцированной постнатальной смертности.

ТИПЫ ДИНАМИКИ ПОЛОВОЙ СТРУКТУРЫ Большаков и Кубанцев (1984) выделяют 4 типа динамики половой структуры. 1). Неустойчивый половой состав, соотношение полов (СП) меняется в разных местообитаниях и во времени, причем как вторичное, так и третичное СП. Характерен для животных с высокой плодовитостью и смертностью (насекомоядные). 2). Преобладание самцов. Характерны низкая плотность, забота о потомстве (хищные). 3). Преобладание самок в третичном СП. Номадные полигамы, образующие скопления (копытные, ластоногие). 4). Постоянство СП приблизительно 1: 1. Узкоспециализированных, стенобионтных видов (выхухоль, крот, бобр).

Репродуктивный потенциал и популяционный рост Пусть у нас есть организм с не перекрывающимися поколениями (одноклеточное). Удельная скорость прироста численности в единицу времени r=d. N/Ndt d. N/dt = r. N, если r константа, то по экспоненте ln N 1 = ln N 0 + rt (прямая) e=2, 7182…

А что будет, если ресурсы ограничены и скорость роста меняется в зависимости от численности? В основе логистической модели лежит линейное снижение скорости удельного роста при увеличении численности

Впервые открыта бельгийским математиком Ферхюльстом (Verhulst, 1838) Переоткрыта Пирлом и Ридом (Pearl, Read, 1920)

Типы динамики численности Давайте обратим внимание на правую часть графика зависимости смертности и рождаемости при логистической кривой

Соотношение плодовитости и смертности В правой части логистической кривой наблюдается равновесие между рождаемостью и смертностью Действительно присутствует установление соответствия между ними в эволюционных масштабах. Например, у луны-рыбы 300 миллионов пелагических икринок, а у акул - несколько яиц. Снижение плодовитости коррелирует с заботой о потомстве. У видов выкармливающих потомков плодовитость зависит от обеспеченности кормом. Плодовитость обратно пропорциональна продолжительности жизни

С. А. Северцов (1941, Наумов, 1954) выделял три типа динамики численности – стабильный, лабильный и эфемерный Стабильный – виды с большой продолжительностью жизни, низкой плодовитостью, поздней половозрелостью. Период 10 -20 лет (копытные, китообразные, гоминиды, орлы). Колебания в разы Лабильный – более раннее созревание, относительно некрупные размеры (некоторые грызуны, зайцеобразные, некоторые хищные). Период – 5 -10 лет, колебания в 10 раз. Эфемерный – короткоживущие виды, большая плодовитость. Период – 3 -10 лет, колебания в 100 раз.

Индекс цикличности Хенттонена Финский зоолог Henttonen с соавторами (1985) ввел индекс цикличности («амплитудности»). S - Среднее квадратичное отклонение. nлет >5 0, 16 по данным Н. В. Башениной, обычно 0, 240, 32 нецикличны, 0, 62 и выше цикличны (иногда рубеж в 0, 5) 0, 79 по данным Н. М. Окуловой 0, 85 Т. В. Кошкина, О. И. Семёнов-Тяньшанский 1, 13 для сибирского лемминга на о. Врангеля (Чернявский, Лазуткин, 2004)

Факторы динамики численности 1) Факторы, независящие от плотности (экзогенные) Климатические факторы. Примеры (низкие температуры, при отсутствии снежного покрова – снижают численность и наоборот). Климат может влиять опосредованно через пищу. А) Гипотеза «климатических циклов» Чарльза Элтона (1924) В основе циклов многолетние изменения климата, погодных типов. Б) Гипотеза связи циклов с солнечной активностью. 11 летний цикл, обнаружено совпадение для непарного шелкопряда и зайцев по материалам Гудзоновой компании Предполагалось, что космическая активность действует прямо так и опосредованно. У нас эту идею развивал Анатолий Александрович Максимовым на данных по водяной полевке.

Факторы, зависящие от плотности (эндогенные) Отношение потребителя и пищи Лемминговые циклы индуцируются пишей. Не только ее недостаток, но и изменения состава пищи, недостаток фосфора, калия Взаимоотношения хищник – жертва Модель Лотка-Вольтера, ее проверка Гаузе. На севере циклы есть, а на юге – нет. Анализ данных с 1871 -1949 из Норвегии показал, что в 1900 -х годах не было циклики, именно тогда велась борьба с хищниками.

Авторегуляция 1. Информатор=Регулятор. Дрожжи –спирт. У водорослей и цианобактерий показана регуляция экзометаболитами. Химические агенты 2. Информация о плотности – поведение =регулятор. Частота контактов влияет на материнское поведение мыши. 3. Информатор – Поведение – Физиология=Регулятор. Гипотеза регуляции через стресс-реакцию Christian, 1955, 1956, 1968, Christian, Davis 1964