Спинной мозг морфофункциональная организация спинного мозга. Спинной мозг. Развитие, морфофункциональная характеристика серого и белого вещества. Регенерация. Морфофункциональная характеристика эфферентных образований центральной нервной системы при возде


^ Нервная система: общая морфофункциональная характеристика; источники развития, классификация.

Нервная система обеспечивает регуляцию всех жизненных процессов в организме и его взаимодействие с внешней средой. Анатомически нервную систему делят на центральную и периферическую. К первой относят головной и спинной мозг, вторая объединяет периферические нервные узлы, стволы и окончания.

С физиологической точки зрения нервная система делится на соматическую, иннервирующую все тело, кроме внутренних органов, сосудов и желез, и автономную, или вегетативную, регулирующую деятельность перечисленных органов.

Нервная система развивается из нервной трубки и ганглиозной пластинки. Из краниальной части нервной трубки дифференцируются головной мозг и органы чувств. Из туловищного отдела нервной трубки и ганглиозной пластинки формируются спинной мозг, спинномозговые и вегетативные узлы и хромаффинная ткань организма.

Особенно быстро возрастает масса клеток в боковых отделах нервной трубки, тогда как дорсальная и вентральная ее части не увеличиваются в объеме и сохраняют эпендимный характер. Утолщенные боковые стенки нервной трубки делятся продольной бороздой на дорсальную - крыльную и вентральную - основную пластинку. В этой стадии развития в боковых стенках нервной трубки можно различить три зоны: эпендиму, выстилающую канал, плащевой слой и краевую вуаль. Из плащевого слоя в дальнейшем развивается серое вещество спинного мозга, а из краевой вуали - его белое вещество.

Одновременно с развитием спинного мозга закладываются спинномозговые и периферические вегетативные узлы. Исходным материалом для них служат клеточные элементы ганглиозной пластинки, дифференцирующиеся в нейробласты и глиобласты, из которых образуются нейроны и майтийные глиоциты спинномозговых ганглиев. Часть клеток ганглиозной пластинки мигрирует на периферию в места локализации вегетативных нервных ганглиев и хромаффинной ткани.


  1. ^ Спинной мозг: морфофункциональная характеристика; строение серого и белого вещества.
Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади - соединительнотканной перегородкой. Внутренняя часть органа темнее - это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество.

Серое вещество на поперечном сечении мозга представлено в виде буквы «Н» или бабочки. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога.

Серое вещество спинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны.

Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.

Среди нейронов спинного мозга можно выделить: нейриты, корешковые клетки, внутренние, пучковые.

В задних рогах различают: губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро. Задние рога богаты диффузно расположенными вставочными клетками. В середине заднего рога располагается собственное ядро заднего рога.

Грудное ядро (ядро Кларка) состоит из крупных вставочных нейронов с сильно разветвленными дендритами.

Из структур заднего рога особый интерес представляют студневидное вещество, которое тянется непрерывно вдоль спинного мозга в I-IV пластинах. Нейроны продуцируют энкефалин - пептид опиоидного типа, ингибирующий болевые эффекты. Студневидное вещество оказывает тормозное действие на функции спинного мозга.

В передних рогах расположены самые крупные нейроны спинного мозга, которые имеют диаметр тела 100-150 мкм и образуют значительные по объему ядра. Это так же, как и нейроны ядер боковых рогов, корешковые клетки. Эти ядра представляют собой моторные соматические центры. В передних рогах наиболее выражены медиальная и латеральная группы моторных клеток. Первая иннервирует мышцы туловища и развита хорошо на всем протяжении спинного мозга. Вторая находится в области шейного и поясничного утолщений и иннервирует мышцы конечностей.


  1. ^ Головной мозг: морфофункциональная характеристика.
Головной мозг – орган ЦНС. Он состоит из большого числа нейронов, связанных между собой синаптическими связями. Взаимодействуя посредством этих связей, нейроны формируют сложные электрические импульсы, которые контролируют деятельность всего организма.

Головной мозг заключен в надежную оболочку черепа. Кроме того, он покрыт оболочками из соединительной ткани – твердой, паутинной и мягкой.

В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга.

В состав ствола мозга входят продолговатый мозг, мост, мозжечок и структуры среднего и промежуточного мозга. Все ядра серого вещества ствола мозга состоят из мультиполярных нейронов. Различают ядра черепных нервов и переключательные ядра.

Продолговатый мозг характеризуется присутствием ядер подъязычного, добавочного, блуждающего, языкоглоточного, преддверно-улиткового нервов. В центральной области продолговатого мозга располагается важный координационный аппарат головного мозга - ретикулярная формация.

Мост делится на дорсальную (покрышковую) и вентральную части. Дорсальная часть содержит волокна проводящих путей продолговатого мозга, ядра V-VIII черепных нервов, ретикулярную формацию моста.

Средний мозг состоит из крыши среднего мозга (четверохолмия), покрышки среднего мозга, черного вещества и ножек мозга. Черное вещество получило свое название в связи с тем, что в его мелких веретенообразных нейронах содержится меланин.

В промежуточном мозге преобладает по объему зрительный бугор. Вентрально от него располагается богатая мелкими ядрами гипоталамическая (подбугорная) область. Нервные импульсы к зрительному бугру из головного мозга идут по экстрапирамидному двигательному пути.


  1. ^ Мозжечок: строение и морфофункциональная характеристика.
Мозжечок представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мозжечка. На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают ее площадь.

Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В коре мозжечка различают три слоя: наружный - молекулярный, средний - ганглионарный слой, и внутренний - зернистый.

Ганглиозный слой содержит грушевидные нейроны. Они имеют нейриты, которые, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей.

Молекулярный слой содержит два основных вида нейронов: корзинчатые и звездчатые. Корзинчатые нейроны находятся в нижней трети молекулярного слоя. Это неправильной формы мелкие клетки размером около 10-20 мкм. Их тонкие длинные дендриты ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно поверхности над грушевидными нейронами. Активность нейритов корзинчатых нейронов вызывает торможение грушевидных нейронов.

Звездчатые нейроны лежат выше корзинчатых и бывают двух типов. Мелкие звездчатые нейроны снабжены тонкими короткими дендритами и слаборазветвленными нейритами, образующими синапсы на дендритах грушевидных клеток. Крупные звездчатые нейроны в отличие от мелких имеют длинные и сильно разветвленные дендриты и нейриты.

Корзинчатые и звездчатые нейроны молекулярного слоя представляют собой единую систему вставочных нейронов, передающую тормозные нервные импульсы на дендриты и тела грушевидных клеток в плоскости, поперечной извилинам. Очень богат нейронами зернистый слой. Первым типом клеток этого слоя можно считать зерновидные нейроны, или клетки-зерна. У них небольшой объем. Клетка имеет 3-4 коротких дендрита. Дендриты клеток-зерен образуют характерные структуры, именуемые клубочками мозжечка.

Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звездчатые нейроны. Различают два вида таких клеток: с короткими и длинными нейритами.

Третий тип клеток составляют веретеновидные горизонтальные клетки. Они встречаются преимущественно между зернистым и ганглионарным слоями. Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами - моховидными и так называемыми лазящими волокнами. Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей. Они заканчиваются в клубочках зернистого слоя мозжечка, где вступают в контакт с дендритами клеток-зерен.

Лазящие волокна поступают в кору мозжечка, по-видимому, по спинно-мозжечковому и вестибуломозжечковому путям. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам.

Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат глиальные клетки с темными ядрами. Микроглия в большом количестве содержится в молекулярном и ганглионарном слоях.


  1. ^ Предмет и задачи эмбриологии человека.

В эмбриогенезе различают 3 раздела: предзародышевый, зародышевый и ранний послезародышевый.

Актуальными задачами эмбриологии является изучение влияния различных эндогенных и экзогенных факторов микроокружения на развитие, строение половых клеток, тканей, органов и систем.


  1. ^ Медицинская эмбриология.
Эмбриология (от греч. embryon - зародыш, logos - учение) - наука о закономерностях развития зародышей.

Медицинская эмбриология изучает закономерности развития зародыша человека. Особое внимание в курсе гистологии с эмбриологией обращается на источники и механизмы развития тканей, метаболические и функциональные особенности системы мать - плацента - плод, позволяющие устанавливать причины отклонений от нормы, что имеет большое значение для медицинской практики.

Знание эмбриологии человека необходимо всем врачам, особенно работающим в области акушерства. Это помогает в постановке диагноза при нарушениях в системе мать - плод, выявлении причин уродств и заболеваний детей после рождения.

В настоящее время знания по эмбриологии человека используются для раскрытия и ликвидации причин бесплодия, рождения «пробирочных» детей, трансплантации фетальных органов, разработки и применения противозачаточных средств. В частности, актуальность приобрели проблемы культивирования яйцеклеток, экстракорпорального оплодотворения и имплантации зародышей в матку.

Процесс эмбрионального развития человека является результатом длительной эволюции и в определенной степени отражает черты развития других представителей животного мира. Поэтому некоторые ранние стадии развития человека очень сходны с аналогичными стадиями эмбриогенеза более низко организованных хордовых животных.

Эмбриогенез человека - часть его онтогенеза, включающая следующие основные стадии: I - оплодотворение, и образование зиготы; II - дробление и образование бластулы (бластоцисты); III - гаструляцию - образование зародышевых листков и комплекса осевых органов; IV - гистогенез и органогенез зародышевых и внезародышевых органов; V - системогенез.

Эмбриогенез тесно связан с прогенезом (развитие и созревание половых клеток) и ранним постэмбриональным периодом. Так, формирование тканей начинается в эмбриональном периоде и продолжается после рождения ребенка.


  1. ^ Половые клетки: строение и функции мужских и женских половых клеток, основные стадии их развития.
Мужские половые клетки человека - сперматозоиды, или спермии, длиной около 70 мкм, имеют головку и хвост.

Сперматозоид покрыт цитолеммой, которая в переднем отделе содержит рецептор - гликозилтрансферазу, обеспечивающую узнавание рецепторов яйцеклетки.

Головка сперматозоида включает небольшое плотное ядро с гаплоидным набором хромосом, содержащее нуклеопротамины и нуклеогистоны. Передняя половина ядра покрыта плоским мешочком, составляющим чехлик сперматозоида. В нем располагается акросома (от греч. асгоп - верхушка, soma - тело). Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и протеазам. В ядре сперматозоида человека содержится 23 хромосомы, одна из которых является половой (X или Y), остальные - аутосомами. Хвостовой отдел сперматозоида состоит из промежуточной, главной и терминальной частей.

Промежуточная часть содержит 2 центральных и 9 пар периферических микротрубочек, окруженных расположенной по спирали митохондрией. От микротрубочек отходят парные выступы, или «ручки», состоящие из другого белка - динеина. Динеин расщепляет АТФ.

Главная часть (pars principalis) хвоста по строению напоминает ресничку с характерным набором микротрубочек в аксонеме (9*2)+2, окруженных циркулярно ориентированными фибриллами, придающими упругость, и плазмолеммой.

Терминальная, или конечная, часть сперматозоида содержит единичные сократительные филаменты. Движения хвоста бичеобразные, что обусловлено последовательным сокращением микротрубочек от первой до девятой пары.

При исследовании спермы в клинической практике проводят подсчет различных форм сперматозоидов в окрашенных мазках, подсчитывая их процентное содержание (спермиограмма).

По данным Всемирной организации здравоохранения (ВОЗ), нормальными характеристиками спермы человека являются следующие показатели: концентрация 20-200 млн/мл, содержание более 60 % нормальных форм. Наряду с нормальными формами в сперме человека всегда присутствуют аномальные - двужгутиковые, с дефектными размерами головки (макро и микроформы), с аморфной головкой, со сросшимися головками, незрелые формы (с остатками цитоплазмы в области шейки и хвоста), с дефектами жгутика.

Яйцеклетки, или овоциты (от лат. ovum - яйцо), созревают в неизмеримо меньшем количестве, чем сперматозоиды. У женщины в течение полового цикла B4-28 дней) созревает, как правило, одна яйцеклетка. Таким образом, за детородный период образуются около 400 зрелых яйцеклеток.

Выход овоцита из яичника называется овуляцией. Вышедший из яичника овоцит окружен венцом фолликулярных клеток, число которых достигает 3-4 тыс. Он подхватывается бахромками маточной трубы (яйцевода) и продвигается по ней. Здесь заканчивается созревание половой клетки. Яйцеклетка имеет шаровидную форму, больший, чем у спермия, объем цитоплазмы, не обладает способностью самостоятельно передвигаться.

Классификация яйцеклеток основывается на признаках наличия, количества и распределения желтка (lecithos), представляющего собой белково-липидное включение в цитоплазме, используемое для питания зародыша.

Различают безжелтковые (алецитальные), маложелтковые (олиголецитальные), среднежелтковые (мезолецитальные), многожелтковые (полилецитальные) яйцеклетки.

У человека наличие малого количества желтка в яйцеклетке обусловлено развитием зародыша в организме матери.

Строение. Яйцеклетка человека имеет диаметр около 130 мкм. К цитолемме прилежат блестящая, или прозрачная, зона (zona pellucida - Zp) и далее слой фолликулярных клеток. Ядро женской половой клетки имеет гаплоидный набор хромосом с X-половой хромосомой, хорошо выраженное ядрышко, в кариолемме много поровых комплексов. В период роста ооцита в ядре происходят интенсивные процессы синтеза иРНК, рРНК.

В цитоплазме развиты аппарат синтеза белка (эндоплазматическая сеть, рибосомы) и аппарат Гольджи. Количество митохондрий умеренно, они расположены около желточного ядра, где идет интенсивный синтез желтка, клеточный центр отсутствует. Аппарат Гольджи на ранних стадиях развития располагается около ядра, а в процессе созревания яйцеклетки смещается на периферию цитоплазмы. Здесь располагаются производные этого комплекса - кортикальные гранулы, число которых достигает около 4000, а размеры 1 мкм. Они содержат гликозаминогликаны и различные ферменты (в том числе протеолитические), участвуют в кортикальной реакции, защищая яйцеклетку от полиспермии.

Прозрачная, или блестящая, зона (zona pellucida - Zp) состоит из гликопротеинов и гликозаминогликанов. В блестящей зоне содержатся десятки миллионов молекул гликопротеина Zp3, каждая из которых имеет более 400 аминокислотных остатков, соединенных с многими олигосахаридными ветвями. В образовании этой зоны принимают участие фолликулярные клетки: отростки фолликулярных клеток проникают через прозрачную зону, направляясь к цитолемме яйцеклетки. Цитолемма яйцеклетки имеет микроворсинки, располагающиеся между отростками фолликулярных клеток. Фолликулярные клетки выполняют трофическую и защитную функции.

Представляет собой уплощенный тяж , расположенный в спинномозговом канале, длиной около 45 см у мужчин и 42 см у женщин. В местах выхода нервов к верхним и нижним конечностям спинной мозг имеет два утолщения: шейное и поясничное.

Спинной мозг состоит из двух типов ткани : наружного белого (пучки нервных волокон) и внутреннего серого вещества (тела нервных клеток, дендриты и синапсы). В центре серого вещества вдоль всего мозга проходит узкий канал с цереброспинальной жидкостью. Спинной мозг имеет сегментарное строение (31-33 сегмента), каждый его участок связан с определенной частью тела, от сегментов спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных (Ci-Cviii), 12 пар грудных (Thi-Thxii), 5 пар поясничных (Li-Lv), 5 пар крестцовых (Si-Sv) и пара копчиковых (Coi-Coiii).

Каждый нерв при выходе из мозга делится на передние и задние корешки . Задние корешки – афферентные пути, передние корешки эфферентные пути. По задним корешкам спинномозговых нервов в спинной мозг поступают афферентные импульсы от кожи, двигательного аппарата, внутренних органов. Передние корешки образованы двигательными нервными волокнами и передают эфферентные импульсы на рабочие органы. Чувствительные нервы преобладают над двигательными, поэтому происходит первичный анализ поступающих афферентных сигналов и формирование реакций наиболее важных для организма в данный момент (передача многочисленных афферентных импульсов на ограниченное число эфферентных нейронов называется конвергенция ).

Общее количество нейронов спинного мозга составляет около 13 млн. Их подразделяют: 1) по отделу нервной системы – нейроны соматической и вегетативной НС; 2) по назначению – эфферентные, афферентные, вставочные; 3) по влиянию – возбуждающие и тормозные.

Функции нейронов спинного мозга.

Эфферентные нейроны относятся к соматической нервной системе и иннервируют скелетные мышцы – мотонейроны. Различают альфа и гамма – мотонейроны. А-мотонейроны осуществляют передачу скелетным мышцам сигналов из спинного мозга. Аксоны каждого мотонейрона многократно делятся, поэтому каждый из них охватывает множество мышечных волокон, образуя с ним двигательную моторную единицу. Г-мотонейроны иннервируют мышечные волокна мышечного веретена. Они обладают высокой частотой импульсации, получают информацию о сотоянии мышечного веретена через промежуточные нейроны (вставочные). Генерируют импульсы с частотой до 1000 в сек. Это фоноактивные нейроны, имеющие на своих дендритах до 500 синапсов.

Афферентные нейроны соматической НС локализуются в спинальных ганглиях и ганглиях черепно-мозговых нервов. Их отростки проводят импульсацию от мышечных, сухожильных, кожных рецепторов, вступают в соответствующие сегменты спинного мозга и соединяются синапсами с вставочными или альфа-мотонейронами.

Функция вставочных нейронов состоит в организации связи между структурами спинного мозга.

Нейроны вегетативной нервной ситемы являются вставочными. Симпатические нейроны расположены в боковых рогах грудного отдела спинного мозга, они имеют редкую частоту импульсации. Одни из них участвуют в поддержании сосудистого тонуса, другие в регуляции гладкой мускулатуры пищеварительной системы.

Совокупность нейронов образует нервные центры.

В спинном мозге находятся центры регуляции большинства внутренних органов и скелетной мускулатуры. Центры управления скелетной мускулатурой находятся во всех отделах спинного мозга и иннервируют по сегментарному принципу скелетную мускулатуру шеи (Сi-Сiv), диафрагмы (Ciii-Cv), верхних конечностей (Cv-Thii), туловища (Thiii-Li), нижних конечностей (Lii-Sv). При повреждении определенных сегментов спинного мозга или его проводящих путей развиваются специфические двигательные нарушения и расстройства чувствительности.

Функции спинного мозга:

А) обеспечивает двустороннюю связь между спинномозговыми нервами и головным мозгом – проводниковая функция;

Б) осуществляет сложные двигательные и вегетативные рефлексы – рефлекторная функция.

Представляет собой систему тканей и органов, построенных из нервной ткани. В ней выделяют:

    Центральный отдел: головной и спинной мозг

    Периферический отдел: автономные и чувствительные ганглии, периферические нервы, нервные окончания.

Существует также подразделение на:

    Соматический (анимальный, цереброспинальный) отдел;

    Вегетативный (автономный) отдел: симпатическая и парасимпатическая части.

Нервную систему формируют следующие эмбриональные источники: нервная трубка, нервный гребень (ганглиозная пластинка) и эмбриональные плакоды. Тканевые элементы оболочек являются мезенхимными производными. На стадии замыкания нейропоров передний конец трубки значительно расширяется, боковые стенки утолщаются, образуя зачатки трех мозговых пузырей. Лежащий краниально пузырь образует передний мозг, средний пузырь - средний мозг, а из третьего пузыря, который переходит в закладку спинного мозга, развивается задний (ромбовидный) мозг. Вскоре после этого нервная трубка изгибается почти под прямым углом, и посредством борозд-сужений первый пузырь разделяется на конечный и промежуточный отделы, а третий мозговой пузырь - на продолговатый и задний отделы мозга. Производные среднего и заднего мозговых пузырей образуют ствол мозга и являются древними образованиями; в них сохраняется сегментарный принцип строения, который исчезает в производных промежуточного и конечного мозга. В последних концентрируются интегративные функции. Так формируются пять отделов мозга: конечный и промежуточный мозг, средний, продолговатый и задний мозг (у человека это происходит примерно в конце 4-й нед эмбрионального развития). Конечный мозг формирует два полушария большого мозга.

В эмбриональном гисто- и органогенезе нервной системы развитие разных отделов мозга происходит с разной скоростью (гетерохронно). Раньше формируются каудальные отделы центральной нервной системы (спинной мозг, ствол мозга); время окончательного формирования структур головного мозга сильно варьирует. В ряде отделов головного мозга это происходит после рождения (мозжечок, гиппокамп, обонятельная луковица); в каждом отделе мозга существуют пространственно-временные градиенты формирования нейронных популяций, которые образуют уникальную структуру нервного центра.

Спинной мозг представляет собой часть центральной нервной системы, в структуре которой наиболее отчетливо сохраняются черты эмбриональных стадий развития мозга позвоночных: трубчатый характер строения и сегмен-тарность. В боковых отделах нервной трубки быстро возрастает масса клеток, тогда как дорсальная и вентральная ее части не увеличиваются в объеме и сохраняют эпендимный характер. Утолщенные боковые стенки нервной трубки делятся продольной бороздой на дорсальную - крыльную, и вентральную - основную пластинку. На этой стадии развития в боковых стенках нервной трубки можно выделить три зоны: эпендиму, выстилающую центральный канал, промежуточную (плащевой слой) и маргинальную (краевую вуаль). Из плащевого слоя в дальнейшем развивается серое вещество спинного мозга, а из краевой вуали - его белое вещество. Нейробласты передних столбов дифференцируются в мотонейроны (двигательные нейроны) ядер передних рогов. Их аксоны выходят из спинного мозга и образуют передние корешки спинномозговых нервов. В задних столбах и промежуточной зоне развиваются различные ядра вставочных (ассоциативных) клеток. Их аксоны, поступая в белое вещество спинного мозга, входят в состав различных проводящих пучков. В задние рога входят центральные отростки чувствительных нейронов спинномозговых узлов.

Одновременно с развитием спинного мозга закладываются спинномозговые и периферические узлы автономной нервной системы. Исходным материалом для них служат стволовые клеточные элементы нервного гребня, которые путем дивергентной дифференцировки развиваются в нейробла-стическом и глиобластическом направлениях. Часть клеток нервного гребня мигрирует на периферию в места локализации узлов автономной нервной системы, параганглиев, нейроэндокринных клеток APUD-серии и хромаффинной ткани.

    Периферическая нервная система.

Периферическая нервная система объединяет периферические нервные узлы, стволы и окончания.

Нервные ганглии (узлы) – структуры, образованные скоплениями нейронов вне ЦНС, - разделяются на чувствительные и автономные (вегетативные). Чувствительные ганглии содержат псевдоуниполярные или биполярные (в спиральном и вестибулярном ганглиях) афферентные нейроны и располагаются преимущественно по ходу задних корешков спинного мозга (чувствительные узлы спинномозговых нервов) и некоторых черепно-мозговых нервов. Чувствительные ганглии спинномозговых нервов имеют веретеновидную форму и покрыты капсулой из плотной волокнистой соединительной ткани. По периферии ганглия находятся плотные скопления тел псевдоуниполярных нейронов, а центральная часть занята их отростками и расположенными между ними тонкими прослойками эндоневрия, несущими сосуды. Автономные нервные ганглии образованы скоплениями мультиполярных нейронов, на которых многочисленные синапсы образуют преганглионарные волокна – отростки нейронов, чьи тела лежат в ЦНС.

    Нерв. Строение и регенерация. Спинномозговые ганглии. Морфофункциональная характеристика.

Нервы (нервные стволы) связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами. Они образованы пучками миелиновых и безмиелиновых волокон, которые объединены соединительнотканными компонентамии (оболочками): эндоневрием, периневрием и эпиневрием. Большинство нервов являются смешанными, т.е. включают афферентные и эфферентные волокна.

Эндоневрий – тонкие прослойки рыхлой волокнистой соединительной ткани с мелкими кровеносными сосудами, окружающие отдельные нервные волокна и связывающие их в единый пучок. Периневрий – оболочка, покрывающая каждый пучок нервных волокон снаружи и отдающая перегородки вглубь пучка. Он имеет пластинчатое строение и образов концентрическими пластами уплощённых фиброблатстоподобных клеток, связанных плотными и щелевыми соединениями. Между слоями клеток в пространствах, заполненных жидкостью, располагаются компоненты базальной мембраны и продольно ориентированные коллагеновые волокна. Эпиневрий – наружная оболочка нерва, связывающая воедино пучки нервных волокон. Он состоит из плотной волокнистой соединительной ткани, содержащей жировые клетки, кровеносные и лимфатические сосуды.

    Спинной мозг. Морфофункциональная характеристика. Развитие. Строение серого и белого вещества. Нейронный состав.

Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительнотканной перегородкой. Внутренняя часть органа темнее - это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество. Серое вещество спинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В процессе развития спинного мозга из нервной трубки образуются нейроны, группирующиеся в 10 слоях, или в пластинах. Для человека характерна

следующая архитектоникауказанных пластин: I-V пластины соответствуют задним рогам, VI-VII пластины - промежуточной зоне, VIII-IX пластины - передним рогам, X пластина - зона околоцентрального канала. Серое вещество мозга состоит из мультиполярных нейронов трех типов. Первый тип нейронов является филогенетически более древним и характеризуется немногочисленными длинными, прямыми и слабо ветвящимися дендритами (изодендритический тип). Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами. Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга

    Головной мозг. Источники развития. Общая морфофункциональная характеристика больших полушарий. Нейронная организация больших полушарий. Цито- и миелоархитектоника коры больших полушарий головного мозга. Возрастные изменения коры.

В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга.

Строение . Кора большого мозга представлена слоем серого вещества. Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга.. Различные участки ее, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные

границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями. Развитие коры больших полушарий (неокортекса) человека в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются нейроциты неокортекса. При этом клетки утрачивают способность к делению и мигрируют в формирующуюся корковую пластинку. Вначале в корковую пластинку поступают нейроциты будущих I и VI слоев, т.е. наиболее поверхностного и глубокого слоев коры. Затем в нее встраиваются в направлении изнутри и кнаружи последовательно нейроны V, IV, III и II слоев. Этот процесс осуществляется за счет образования клеток в небольших участках вентрикулярной зоны в различные периоды эмбриогенеза (гетерохрон-но). В каждом из этих участков образуются группы нейронов, последовательно выстраивающихся вдоль одного или нескольких волокон

радиальной глии в виде колонки.

Цитоархитектоника коры большого мозга. Мультиполярные нейроны коры весьма разнообразны по форме. Среди них можно выделить пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны. Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоев: I - молекулярный, II - наружный зернистый, III - nuрамидных нейронов, IV - внутренний зернистый, V - ганглионарный, VI - слой полиморфных клеток. Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их нейриты проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. Наружный зернистый слой образован мелкими нейронами, имеющими округлую, угловатую и пирамидальную форму, и звездчатыми нейроцитами. Дендриты этих клеток поднимаются в молекулярный слой. Нейриты или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя. Самый широкий слой коры большого мозга - пирамидный. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Нейрит пирамидной клетки всегда отходит от ее основания. Внутренний зернистый слой образован мелкими звездчатыми нейронами. В его состав входит большое количество горизонтальных волокон. Ганглионарный слой коры образован крупными пирамидами, причем область прецентральной извилины содержит гигантские пирамиды.

Слой полиморфных клеток образован нейронами различной формы.

Миелоархитектоника коры . Среди нервных волокон коры полушарий большого мозга можно выделить ассоциативные волокна, связывающие отдельные участки коры одного полушария, комиссуральные, соединяющие кору различных полушарий, и проекционные волокна, как афферентные, так и эфферентные, которые связывают кору с ядрами низших отделов центральной

нервной системы.

Возрастные изменения . На 1-м году жизни наблюдаются типизация формы пирамидных и звездчатых нейронов, их увеличение, развитие дендритных и аксонных арборизаций, внутриансамблевых связей по вертикали. К 3 годам в ансамблях выявляются «гнездные» группировки нейронов, более четко сформированные вертикальные дендритные пучки и пучки радиарных волокон. К 5-6 годам нарастает полиморфизм нейронов; усложняется система внутриансамблевых связей по горизонтали за счет роста в длину и разветвлений боковых и базальных дендритов пирамидных нейронов и развития боковых терминалей их апикальных дендритов. К 9-10 годам увеличиваются клеточные группировки, значительно усложняется структура короткоаксонных нейронов, и расширяется сеть аксонных коллатералей всех форм интернейронов. К 12-14 годам в ансамблях четко обозначаются специализированные формы пирамидных нейронов, все типы интернейронов достигают высокого уровня дифференцировки. К 18 годам ансамблевая организация коры по основным параметрам своей архитектоники достигает уровня таковой у взрослых.

    Мозжечок. Строение и морфофункциональная характеристика. Нейронный состав коры мозжечка, глиоциты. Межнейронные связи.

Мозжечок . Представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мозжечка. На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают ее площадь. Борозды и извилины создают на разрезе

характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка

белого вещества, покрытая слоем серого вещества - корой. В коре мозжечка различают три слоя: наружный - молекулярный, средний - ганглионарный слой, или слой грушевидных нейронов, и внутренний -зернистый. Ганглиозный слой содержит грушевидные нейроны. Они имеют нейриты, которые, покидая кору мозжечка, образуют начальное звено его эфферентных

тормозных путей. От грушевидного тела в молекулярный слой отходят 2-3 дендрита, которые пронизывают всю толщу молекулярного слоя. От основания тел этих клеток отходят нейриты, проходящие через зернистый слой коры мозжечка в белое вещество и заканчивающиеся на клетках ядер мозжечка. Молекулярный слой содержит два основных вида нейронов: кор-зинчатые и звездчатые. Корзинчатые нейроны находятся в нижней трети молекулярного слоя. Их тонкие длинные дендриты ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно поверхности над грушевидными нейронами. Звездчатые нейроны лежат выше корзинчатых и эывают двух типов. Мелкие звездчатые нейроны снабжены тонкими короткими дендритами и слаборазветвленными нейритами, образующими синапсы. Крупные звездчатые нейроны имеют длинные и сильно разветвленные дендриты и нейриты. Зернистый слой. Первым типом клеток этого слоя можно считать зерновидные нейроны, или клетки-зерна. Клетка имеет 3-4 коротких дендрита,

заканчивающихся в этом же слое концевыми ветвлениями в виде лапки птицы. Нейриты клеток-зерен проходят в молекулярный слой и в нем делятся на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка. Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звездчатые нейроны. Различают два вида таких клеток: с короткими и длинными нейритами. Нейроны с короткими нейритами лежат вблизи ганглионарного слоя. Их разветвленные дендриты распространяются в молекулярном слое и образуют синапсы с параллельными волокнами - аксонами клеток-зерен. Нейриты направляются в зернистый слой к клубочкам мозжечка и заканчиваются синапсами на концевых ветвлениях дендритов клеток-зерен.

Немногочисленные звездчатые нейроны с длинными нейритами имеют обильно ветвящиеся в зернистом слое дендриты и нейриты, выходящие в белое вещество. Третий тип клеток составляют веретеновидные горизонтальные клетки. Они имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Нейриты же этих клеток дают коллатерали в зернистый слой и уходят в

белое вещество. Глиоциты . Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат глиальные клетки с темными ядрами. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка. Межнейрональные связи . Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами - моховидными и так называемыми лазящими волокнами. Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей и опосредованно через клетки-зерна оказывают на грушевидные клетки возбуждающее действие.

Лазящие волокна поступают в кору мозжечка, по-видимому, по спинно-мозжечковому и вестибуломозжечковому путям. Они пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности синапсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам.

    Автономная (вегетативная) нервная система. Общая морфофункциональная характеристика. Отделы. Строение экстрамуральных и интрамуральных ганглиев.

ВНС делится на симпатическую и парасимпатическую. Обе системы одновременно принимают участие в иннервации органов и оказывают на них противоположное влияние. Состоит из центральных отделов, представленных ядрами серого вещества головного и спинного мозга, и периферических: нервных стволов, узлов (ганглиев) и сплетений.

Интрамуральные ганглии и связанные с ними проводящие пути ввиду их высокой автономии, сложности организации и особенностей медиаторного обмена выделяют в самостоятельный метасимпатический отдел автономной НС. Выделяют нейроны трёх типов:

    Длинноаксонные эфферентные нейроны (клетки I типа Догеля) с короткими дендритами и длинным аксоном, идущим за пределы узла к клеткам рабочего органа, на которых он образует двигательные или секреторные окончания.

    Равноотросчатые афферентные нейроны (клетки II типа Догеля) содержат длинные дендриты и аксон, уходящий за пределы данного ганглия в соседние и образующий синапсы на клетках I и III типов. Входят в качестве рецепторного звена в состав местных рефлекторных дуг, которые замыкаются без захода нервного импульса в ЦНС.

    Ассоциативные клетки (клетки III типа Догеля) – местные вставочные нейроны, соединяющие своими отростками несколько клеток I и II типов. Дендриты этих клеток не выходят за пределы узла, а аксоны направляются в другие узлы, образуя синапсы на клетках I типа.


Спинной мозг характеризуется выраженным сегментарным строением, отражающим сегментарное строение тела позвоночных. От каждого спинномозгового сегмента отходят две пары вентральных и дорсальных корешков. Дорсальные корешки формируют афферентные входы спинного мозга. Они образованы центральными отростками волокон первичных афферентных нейронов, тела которых вынесены на периферию и находятся в спинномозговых ганглиях. Вентральные корешки образуют эфферентные выходы спинного мозга. В них проходят аксоны a и g-мотонейронов, а также преганглионарных нейронов вегетативной нервной системы. Такое распределение афферентных и эфферентных волокон было установлено еще в начале прошлого века и получило название закона Белла – Мажанди. После перерезки передних корешков на одной стороне наблюдается полное выключение двигательных реакций; но чувствительность этой стороны тела сохраняется. Перерезка задних корешков выключает чувствительность, но не приводит к утрате двигательных реакций мускулатуры.

1 - белое вещество;

2 - серое вещество;

3 - задний (чувствительный) корешок;

4 - спинно-мозговые нервы;

5 - передний (двигательный) корешок;

6 - спинно-мозговой ганглий

Нейроны спинномозговых ганглиев относятся к простым униполярным, или псевдоуниполярным, нейронам. Название «псевдоуниполярный» объясняется тем, что в эмбриональном периоде первичные афферентные нейроны происходят от биполярных клеток, отростки которых затем сливаются. Нейроны спинномозговых ганглиев можно подразделить на клетки малых и больших размеров. Тело крупных нейронов имеет диаметр порядка 60–120 мкм, в то время как у мелких нейронов он колеблется от 14 до 30 мкм.

Крупные нейроны дают начало толстым миелинизированным волокнам. От мелких начинаются как тонкие миелинизированные, так и немиелинизированные волокна. После бифуркации оба отростка направляются в противоположные направления: центральный входит в дорсальный корешок и в его составе – в спинной мозг, периферический – в различные соматические и висцеральные нервы, подходящие к рецепторным образованиям кожи, мышц и внутренних органов.

Иногда центральные отростки первичных афферентных нейронов заходят в вентральной корешок. Это происходит при трифуркации аксона первичного афферентного нейрона, в результате которой его отростки проецируются в спинной мозг и через дорсальный и вентральный корешки.

Из всей популяции клеток дорсальных ганглиев примерно 60–70% относится к мелким нейронам. Это соответствует тому, что число немиелинизированных волокон в дорсальном корешке превышает число миелинизированных волокон.

Тела нейронов спинномозговых ганглиев не имеют дендритных отростков и не получают синоптических входов. Их возбуждение происходит в результате прихода потенциала действия по периферическому отростку, контактирующему с рецепторами.

Клетки спинномозговых ганглиев содержат высокие концентрации глутаминовой кислоты – одного из предполагаемых медиаторов. Их поверхностная мембрана содержит рецепторы, специфически чувствительные к g-аминомасляной кислоте, что совпадает с высокой чувствительностью к g-аминомасляной кислоте центральных окончаний первичных афферентных волокон. Малые нейроны ганглиев содержат вещество Р или соматостатин. Оба этих полипептида также являются вероятными медиаторами, высвобождаемыми окончаниями первичных афферентных волокон.

Каждая пара корешков соответствует одному из позвонков и покидает позвоночный канал через отверстие между ними. Поэтому сегменты спинного мозга принято обозначать по тому позвонку, возле которого из спинного мозга выходят соответствующие корешки. Спинной мозг принято также разделять на несколько отделов: шейный, грудной, поясничный и крестцовый, каждый из которых содержит по нескольку сегментов. В связи с развитием конечностей нейронный аппарат тех сегментов спинного мозга, которые их иннервируют, получил наибольшее развитие. Это нашло свое отражение в образовании шейного и поясничного утолщений. В области утолщений спинного мозга корешки содержат наибольшее количество волокон и имеют наибольшую толщину.

На поперечном срезе спинного мозга ясно выделяется центрально расположенное серое вещество, образованное скоплением нервных клеток, и окаймляющее его белое вещество, образованное нервными волокнами. В сером веществе различают вентральные и дорсальные рога, между которыми лежит промежуточная зона. Кроме того, в грудных сегментах различают также боковое выпячивание серого вещества – боковые рога.

Все нейронные элементы спинного мозга могут быть подразделены на 4 основные группы: эфферентные нейроны, вставочные нейроны, нейроны восходящих трактов и интраспинальные волокна чувствительных афферентных нейронов. Моторные нейроны сосредоточены в передних рогах, где они образуют специфические ядра, все клетки которых посылают свои аксоны к определенной мышце. Каждое двигательное ядро обычно тянется на несколько сегментов. Поэтому и аксоны мотонейронов, иннервирующих одну и ту же мышцу, покидают спинной мозг в составе нескольких вентральных корешков.

Кроме моторных ядер, расположенных в вентральных рогах, выделяются большие скопления нервных клеток в промежуточной зоне серого вещества. Это основное ядро вставочных нейронов спинного мозга. Аксоны вставочных нейронов распространяются как внутри сегмента, так и в ближайшие соседние сегменты.

Характерное скопление нервных клеток занимает также дорсальную часть дорсального рога. Эти клетки образуют густые переплетения, а указанная зона получила название желатинозной субстанции Роланда.

Наиболее точное и систематизированное представление о топографии нервных клеток серого вещества спинного мозга дает разделение его на последовательные слои, или пластины, в каждой из которых группируются главным образом однотипные нейроны.

Хотя послойная типография серого вещества была первоначально выявлена в спинном мозге кошки, она оказалась достаточно универсальной и вполне применима к спинному мозгу, как других позвоночных, так и человека.

Согласно этим данным, все серое вещество можно разделить на 10 пластин. Самая первая дорсальная пластина содержит главным образом, так называемые краевые нейроны. Их аксоны проецируются рострально, давая начало спиноталамическому тракту. На краевых нейронах оканчиваются волокна тракта Лиссауэра, который образован смесью первичных афферентных волокон и аксонами проприоспинальных нейронов.

Вторая и третья пластины образуют желатинозную субстанцию. Здесь локализуются два основных типа нейронов: более мелкие и относительно крупные нейроны. Хотя тела нейронов второй пластины имеют небольшой диаметр, их дендритные разветвления весьма многочисленны. Аксоны нейронов второй пластины проецируются на тракт Лиссауэра и собственный дорсолатеральный пучок спинного мозга, но многие остаются в пределах желатинозной субстанции. На клетках второй и третьей пластин оканчиваются волокна первичных афферентных нейронов, преимущественно кожной и болевой чувствительности.

Четвертая пластина занимает примерно центр дорсального рога. Дендрита нейронов IV слоя проникают в желатинозную субстанцию, а их аксоны проецируются в таламус и боковое цервикальное ядро. Синаптические входы они получают от нейронов желатинозной субстанции, а их аксоны проецируются в таламус и боковое цервикальное ядро. Синаптические входы они получают от нейронов желатинозной субстанции и первичных афферентных нейронов.

В целом нервные клетки первой-четвертой пластин захватывают всю вершину дорсального рога и образуют первичную сенсорную область спинного мозга. Сюда проецируются волокна большей частя дорсально-корешковых афферентов от экстерорецепторов, включая кожную и болевую чувствительность. В этой же зоне локализованы нервные клетки, дающие начало нескольким восходящим трактам.

В пятой и шестой пластинах локализуются многочисленные типы вставочных нейронов, получающие синаптические входы от волокон заднего корешка и нисходящих путей, в особенности кортико-спинального и руброспинального тракта.

В седьмой и восьмой пластинах локализуются проприоспинальные вставочные нейроны, дающие начало длинным аксонам, достигающим нейронов отдаленных сегментов. Здесь заканчиваются афферентные волокна от проприорецепторов, волокна вестибулоспинального и ретикулоспинального трактов, аксоны проприоспинальных нейронов.

В девятой пластине располагаются тела a- и g-мотонейронов. Этой области достигают также пресинаптические окончания первичных афферентных волокон от мышечных рецепторов растяжения, окончания волокон нисходящих трактов, кортико-спинальных волокон, терминали аксонов возбуждающих и тормозящих вставочных нейронов.

Десятая пластина окружает спинномозговой канал и содержит наряду с нейронами значительное количество глиальных клеток и комиссуральных волокон.

Клетки нейроглии спинного мозга на значительном протяжении покрывают поверхность нейронов, причем отростки глиальной клетки направлены, с одной стороны, к телам нейронов, а с другой, часто контактируют с кровеносными капиллярами, являясь посредниками между нервными элементами и источниками их питания.

Спинной мозг по восходящим путям передает сигналы в надсегментарные уровни головного мозга, а по нисходящим получает оттуда команды к действию. Восходящие пути передают импульсы от проприоцепторов по волокнам спинобульбарных пучков Голля и Бурдаха и спинномозжечковых путей Говерса и Флексиго, от болевых и температурных рецепторов по латеральному спиноталамическому тракту, от тактильных рецепторов по вентральному спиноталамическому пути и частично по пучкам Голля и Бурдаха.

Нисходящие пути проходят в составе кортикоспинальных, или пирамидных, трактов и экстракортикоспинальных, или экстрапирамидных.



Представляет собой уплощенный тяж , расположенный в спинномозговом канале, длиной около 45 см у мужчин и 42 см у женщин. В местах выхода нервов к верхним и нижним конечностям спинной мозг имеет два утолщения: шейное и поясничное.

Спинной мозг состоит из двух типов ткани : наружного белого (пучки нервных волокон) и внутреннего серого вещества (тела нервных клеток, дендриты и синапсы). В центре серого вещества вдоль всего мозга проходит узкий канал с цереброспинальной жидкостью. Спинной мозг имеет сегментарное строение (31-33 сегмента), каждый его участок связан с определенной частью тела, от сегментов спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных (Ci-Cviii), 12 пар грудных (Thi-Thxii), 5 пар поясничных (Li-Lv), 5 пар крестцовых (Si-Sv) и пара копчиковых (Coi-Coiii).

Каждый нерв при выходе из мозга делится на передние и задние корешки . Задние корешки – афферентные пути, передние корешки эфферентные пути. По задним корешкам спинномозговых нервов в спинной мозг поступают афферентные импульсы от кожи, двигательного аппарата, внутренних органов. Передние корешки образованы двигательными нервными волокнами и передают эфферентные импульсы на рабочие органы. Чувствительные нервы преобладают над двигательными, поэтому происходит первичный анализ поступающих афферентных сигналов и формирование реакций наиболее важных для организма в данный момент (передача многочисленных афферентных импульсов на ограниченное число эфферентных нейронов называется конвергенция ).

Общее количество нейронов спинного мозга составляет около 13 млн. Их подразделяют: 1) по отделу нервной системы – нейроны соматической и вегетативной НС; 2) по назначению – эфферентные, афферентные, вставочные; 3) по влиянию – возбуждающие и тормозные.

Функции нейронов спинного мозга.

Эфферентные нейроны относятся к соматической нервной системе и иннервируют скелетные мышцы – мотонейроны. Различают альфа и гамма – мотонейроны. А-мотонейроны осуществляют передачу скелетным мышцам сигналов из спинного мозга. Аксоны каждого мотонейрона многократно делятся, поэтому каждый из них охватывает множество мышечных волокон, образуя с ним двигательную моторную единицу. Г-мотонейроны иннервируют мышечные волокна мышечного веретена. Они обладают высокой частотой импульсации, получают информацию о сотоянии мышечного веретена через промежуточные нейроны (вставочные). Генерируют импульсы с частотой до 1000 в сек. Это фоноактивные нейроны, имеющие на своих дендритах до 500 синапсов.

Афферентные нейроны соматической НС локализуются в спинальных ганглиях и ганглиях черепно-мозговых нервов. Их отростки проводят импульсацию от мышечных, сухожильных, кожных рецепторов, вступают в соответствующие сегменты спинного мозга и соединяются синапсами с вставочными или альфа-мотонейронами.



Функция вставочных нейронов состоит в организации связи между структурами спинного мозга.

Нейроны вегетативной нервной ситемы являются вставочными. Симпатические нейроны расположены в боковых рогах грудного отдела спинного мозга, они имеют редкую частоту импульсации. Одни из них участвуют в поддержании сосудистого тонуса, другие в регуляции гладкой мускулатуры пищеварительной системы.

Совокупность нейронов образует нервные центры.

В спинном мозге находятся центры регуляции большинства внутренних органов и скелетной мускулатуры. Центры управления скелетной мускулатурой находятся во всех отделах спинного мозга и иннервируют по сегментарному принципу скелетную мускулатуру шеи (Сi-Сiv), диафрагмы (Ciii-Cv), верхних конечностей (Cv-Thii), туловища (Thiii-Li), нижних конечностей (Lii-Sv). При повреждении определенных сегментов спинного мозга или его проводящих путей развиваются специфические двигательные нарушения и расстройства чувствительности.

Функции спинного мозга:

А) обеспечивает двустороннюю связь между спинномозговыми нервами и головным мозгом – проводниковая функция;

Б) осуществляет сложные двигательные и вегетативные рефлексы – рефлекторная функция.