Классификация и механизмы возбуждения рецепторов


По специализации к восприятию определенного вида информации различают:

1. зрительные,

2. слуховые,

3. обонятельные,

4. вкусовые,

5. осязательные рецепторы,

6. термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и

7. рецепторы боли.

В зависимости от локализации все рецепторы подразделяются на:

1. внешние (экстерорецепторы) и

2. внутренние (интерорецепторы).

К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные.

К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на:

1. фоторецепторы,

2. механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы;

3. хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы;

4. терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны);

5. болевые (ноцицептивные) рецепторы.

Все рецепторы изначально делятся на:

1. первично-чувству ющие и

2. вторично-чувствующие.

К первично-чувствующим относятся рецепторы обоняния, тактильные рецепторы и проприорецепторы. Они характеризуются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы.

К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулорецепторы. У них между раздражителем и первым нейроном находится высоко специализированная рецепторная клетка. При этом, первый нейрон возбуждается не непосредственно, а опосредованно через рецепторную (не нервную) клетку.

Общие механизмы возбуждения рецепторов .

При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа:

1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторными белковыми молекулами, которые находятся в составе клеточной мембраны рецепторной клетки;

2) возникновение внутриклеточных процессов усиления и передачи сенсорного стимула в пределах рецепторной клетки; и

3) открытие находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что приводит к деполяризации клеточной мембраны рецепторной клетки и возникновению так называемого рецепторного потенциала .

Рецепторный потенциал – это изменение величины мембранного потенциала, возникающее в рецепторе при действии адекватного раздражителя вследствие изменения ионной проницаемости мембраны рецептора и градуально зависящее от интенсивности стимула.

Под действием стимула белковые молекулы белково-липидного слоя мембраны рецептора изменяют свою конфигурацию, ионные каналы открываются и проводимость мембраны для натрия повышается, возникает локальный ответ или рецепторный потенциал . Когда рецепторный потенциал достигает порогового значения, возникает нервный импульс в виде потенциала действия – распространяющееся возбуждение.

Рецепторный потенциал подчиняется следующим законам:

1. он является локальным, т.е. не распространяется,

2. зависит от силы раздражителя,

3. может суммироваться,

4. может быть деполяризационным, а может гиперполяризационным.

Вторичные рецепторы отличаются от первичных рецепторов механизмом трансформации стимула в нервную активность.

Во вторично-чувствующих рецепторах высокоспециализированная рецепторная клетка связана с окончаниями сенсорного нейрона синаптически. Поэтому, изменение электрического рецепторного потенциала этой клетки под воздействием раздражителя приводит, к выделению квантов медиатора из пресинаптического окончания рецепторной клетки. Этот медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану окончания первого нейрона, изменяет ее поляризацию и на ней возникает ВПСП. Этот ВПСП и называют генераторным потенциалом , так как он в дальнейшем электротонически вызывает генерацию импульсного бинарного ответа в виде потенциала действия.

В первичных рецепторах рецепторный и генераторный потенциалы не имеют различий и фактически идентичны.

Итак, преобразование энергии внешнего стимула – кодирование информации и передача информации в сенсорные ядра мозга обеспечивается двумя функционально различными процессами:

1. градуальными аналоговыми рецепторными или генераторными потенциалами, подчиняющимися силовым законам и

2. бинарным потенциалом действия (импульсом), следующим закону “все или ничего”.



Рецепторами называются специальные образования, восприни­мающие и преобразующие энергию внешнего раздражения в специфи­ческую энергию нервного импульса.

Все рецепторы разделяют на экстерорецепторы, принимающие раз­дражения из внешней среды (рецепторы органов слуха, зрения, обоняния, вкуса, осязания), интерорецепторы , реагирующие на раздражения из внутренних органов, и проприорецепторы , воспринимающие раздраже­ния из двигательного аппарата (мышц, сухожилий, суставных сумок).

В зависимости от природы раздражителя , на который они настрое­ны, различают хеморецепторы (рецепторы вкуса и обоняния, хеморецепторы сосудов и внутренних органов), механорецепторы (проприорецепторы двигательной сенсорной системы, барорецепторы сосудов, рецепторы слуховой, вестибулярной, тактильной и болевой сенсорных систем), фоторецепторы (рецепторы зрительной сенсорной системы) и терморецепторы (рецепторы сенсорной системы кожи и внутренних органов).

По характеру связи с раздражителем различают дистантные рецепторы, реагирующие на сигналы от удаленных источников и обусловливающие предупредительные реакции организма (зрительные и слуховые), и контактные, принимающие непосредственные воздействия (тактильные и др.).

По структурным особенностям различают первичные (первично-чувствующие) и вторичные (вторичночувствующие) рецепторы.

Первичные рецепторы – это окончания чувствительных биполярных клеток, тело которых находится вне ЦНС, один отросток подходит к воспринимающей раздражение поверхности, а другой направляется в ЦНС (например, проприорецепторы, тактильные и обонятельные рецепторы).

Вторичные рецепторы представлены специализированными рецепторными клетками, которые расположены между чувствительным нейроном и точкой приложения раздражителя. К ним относят рецепторы вкуса, зрения, слуха, вестибулярного аппарата. В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, рецепторы положения тела и его частей в пространстве (проприо- и вестибу-лорецепторы) и рецепторы кожи.

Механизм возбуждения рецепторов. В первичных рецепторах энергия внешнего раздражителя непосредственно преобразуется в нервный импульс в самом чувствительном нейроне. В периферическом окончании чувствительных нейронов при действии раздражителя происходит изменение проницаемости мембраны для определенных ионов и ее деполяризация, возникает местное возбуждение – рецепторный потенциал, который, достигнув пороговой величины, обусловливает появление потенциала действия, распространяемого по нервному волокну к нервным центрам.

Во вторичных рецепторах раздражитель вызывает появление рецепторного потенциала в клетке-рецепторе. Ее возбуждение приводит к выделению медиатора в пресинаптической части контакта клетки-рецептора с волокном чувствительного нейрона. Местное возбуждение этого волокна отражается появлением возбуждающего постсинаптического потенциала (ВПСП), или так называемого генераторного потенциала. При достижении порога возбудимости в волокне чувствительного нейрона возникает потенциал действия, несущий информацию в ЦНС. Таким образом, во вторичных рецепторах одна клетка преобразует энергию внешнего раздражителя в рецепторный потенциал, а другая – в генераторный потенциал и потенциал действия. Постсинаптический потенциал первого чувствительного нейрона называют генераторным потенциалом и он приводит к генерации нервных импульсов.

4. Свойства рецепторов

1. Главным свойством рецепторов является их избирательная чувствительность к адекватным раздражителям, к восприятию которых они эволюционно приспособлены (свет для фоторецепторов, звук для рецепторов улитки внутреннего уха и т.п.). Большинство рецепторов настроено на восприятие одного вида (модальности) раздражителя – света, звука и т.п. К таким специфическим для них раздражителям чувствительность рецепторов чрезвычайно высока. Возбудимость рецептора измеряется минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

2. Другим свойством рецепторов является очень низкая величина порогов для адекватных раздражителей. Например, в зрительной сенсорной системе фоторецепторы способны возбуждаться одиночным квантом света в видимой части спектра, обонятельные рецепторы – при действии одиночных молекул пахучих веществ и т.п. Возбуждение рецепторов может возникать и при действии неадекватных раздражителей (например, ощущение света в зрительной сенсорной системе при механических и электрических раздражениях). Однако в этом случае пороги возбуждения оказываются значительно более высокими.

Различают абсолютные и разностные (дифференциальные) пороги. Абсолютные пороги измеряются минимально ощущаемой величиной раздражителя. Дифференциальные пороги представляют собой минимальную разницу между двумя интенсивностями раздражителя, которая еще воспринимается организмом (различия в цветовых оттенках, яркости света, степени напряжения мышц, суставных углах и пр.).

3. Фундаментальным свойством всего живого является адаптация, т.е. приспособляемость к условиям внешней среды. Адаптационные процессы, охватывают не только рецепторы, но и все звенья сенсорных
систем.

Адаптация заключается в приспособлении всех звеньев сенсорной системы к длительно действующему раздражителю, а проявляется она в снижении абсолютной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя: войдя в прокуренное помещение, человек через несколько минут перестает ощущать запах дыма; человек не ощущает постоянного давления своей одежды на кожу, не замечает непрерывного тиканья часов и т.д.

По скорости адаптации к длительным раздражениям рецепторы подразделяют на быстро и медленно адаптирующиеся. Первые после развития адаптационного процесса практически не сообщают следующему за ними нейрону о длящемся раздражении, у вторых эта информация передается, хотя и в значительно уменьшенном виде (например, так называемые вторичные окончания в мышечных веретенах, которые информируют ЦНС о статических напряжениях).

Адаптация может сопровождаться как понижением, так и повышением возбудимости рецепторов. Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы – это так называемая темновая адаптация. Однако такая высокая возбудимость рецепторов оказывается чрезмерной при переходе в ярко освещенное помещение («свет режет глаза»). В этих условиях возбудимость фоторецепторов быстро снижается - происходит световая адаптация.

Для оптимального восприятия внешних сигналов нервная система тонко регулирует чувствительность рецепторов в зависимости от потребностей момента путем эфферентной регуляции рецепторов. В частности, при переходе от состояния покоя к мышечной работе чувствительность рецепторов двигательного аппарата заметно возрастает, что облегчает восприятие информации о состоянии опорно- двигательного аппарата (гамма- регуляция) . Механизмы адаптации к различной интенсивности раздражителя могут затрагивать не только сами рецепторы, но и другие образования в органах чувств. Например, при адаптации к различной интенсивности звука происходит изменение подвижности слуховых косточек (молоточка, наковальни и стремячка) в среднем ухе человека.

5. Кодирование информации

Амплитуда и длительность отдельных нервных импульсов (потенциалов действия), поступающих от рецепторов к центрам, при разных Раздражениях остаются постоянными. Однако рецепторы передают в нервные центры адекватную информацию не только о характере, но и о силе дейст­вующего раздражителя. Информация об изменениях интенсивности раз­дражителя кодируется (преобразуется в форму нервного импульсного ко­да) двумя способами:

изменением частоты импульсов, идущих по каждому из нерв­ных волокон от рецепторов к нервным центрам;

изменением числа и распределения импульсов - их количества в пачке (порции), интервалов между пачками, продолжительно­сти отдельных пачек импульсов, числа одновременно возбужден­ных рецепторов и соответствующих нервных волокон (разнооб­разная пространственно-временная картина этой импульсации, богатая информацией, называется паттерном).

Чем больше интенсивность раздражителя, тем больше частота афферентных нервных импульсов и их количество. Это обусловливает­ся тем, что нарастание силы раздражителя приводит к увеличению деполя­ризации мембраны рецептора, что, в свою очередь, вызывает увеличение амплитуды генераторного потенциала и повышение частоты возникающих в нервном волокне импульсов. Между силой раздражения и числом нерв­ных импульсов существует прямо пропорциональная зависимость.

Имеется еще одна возможность кодирования сенсорной информа­ции. Избирательная чувствительность рецепторов к адекватным раз­дражителям уже позволяет отделить различные виды действующей на организм энергии. Однако и в пределах одной сенсорной системы может быть различная чувствительность отдельных рецепторов к разным по характеристикам раздражителям одной и той же модальности (разли­чение вкусовых характеристик разными вкусовыми рецепторами языка, цветоразличение различными фоторецепторами глаза и др.).

Механический стимул приводит к деформации мембраны рецептора. В результате этого электрическое сопротивление мембраны уменьшается, увеличивается ее проницаемость для Na + . Через мембрану рецептора начинает течь ионный ток, приводящий к генерации рецепторного потенциала. При увеличении рецепторного потенциала до критического уровня деполяризации в рецепторе генерируются импульсы, распространяющиеся по волокну в ЦНС.

Совокупность точек на периферии, с которых периферические стимулы влияют на данную сенсорную клетку в ЦНС, называют рецептивным полем.

В одном рецептивном поле находятся рецепторы, посылающие нервные импульсы другим центральным нейронам, т.е. отдельные рецептивные поля перекрываются. Перекрывание рецептивных полей повышает разрешающую способность рецепции и распознавания локализации стимула.

Отношения между интенсивностью стимула и ответом.Существует количественная зависимость между интенсивностью стимула и ответом в форме частоты возникающих потенциалов действия. Такая же зависимость описывает и чувствительность сенсорного нейрона в ЦНС. Различие только в том, что рецептор отвечает на амплитуду стимула, а центральный сенсорный нейрон на частоту потенциалов действия, приходящих к нему от рецептора.

Для центральных сенсорных нейронов важен не столько абсолютный порог S 0 стимула, а дифференциальный , т.е. разностный порог. Под дифференциальным порогом понимают минимальное изменение в данном параметре стимула (пространственном, временном и других), которое вызывает измеримое изменение в частоте импульсации сенсорного нейрона. Обычно сильнее всего он зависит от силы стимула. Иначе говоря, чем выше интенсивность стимула, тем выше дифференциальный порог, т.е. тем хуже распознаются различия между стимулами (рис.24).

Например, для давления на кожу в ограниченном диапазоне некоторых интенсивностей дифференциальный порог равен усилению давления на 3%. Это означает, что два стимула, интенсивности которых по абсолютной величине отличаются на 3% и более, будут распознаваться. Если же их интенсивности отличаются менее чем на 3%, то стимулы будут восприниматься как одинаковые. Следовательно, если после груза в 100 г мы поставим на руку груз в 110 г, то эту разницу мы сможем ощутить. Но если вначале поставить 500 г, а потом - 510 г, то в этом случае разница в 10 грамм не будет распознана, так как она менее 3% (т.е. менее 15 г) величины исходного груза.

Рис. 24. Кожные механорецепторы разного типа

Верхний ряд - схемы рецептивных полей, средний - морфология рецепторов, нижний - электрическая активность рецепторов.

(а) Быстро адаптирующиеся рецепторы: тельца Мейснера (слева) и тельца Пачини (справа).

(б) Медленно адаптирующиеся рецепторы: диски Меркеля (слева) и тельца Руффини (справа).

32. 1. Рецептор: понятие, функция, классификация рецепторов, свойства и их особенности, механизм возбуждения рецепторов.

Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов.

Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

При всем разнообразии стимулов и сенсорных систем все системы имеют одинаковый план строения. Каждая сенсорная система состоит из периферической части – рецепторов, проводниковой – нервных путей и подкорковых нервных центров, корковой части – в ней происходит окончательный анализ информации, поступившей от периферических рецепторов и нервных центров коры больших полушарий.

Классификация рецепторов . В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации, у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы). К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.



Общие механизмы возбуждения рецепторов . Рецепторы представляют собой клетки, различающие естественные раздражители и посылающие информацию о них в ЦНС. Стимуляция рецептора вызывает в дендритах изменение потенциала покоя в сторону деполяризации. При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа:

1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки;

2) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки; и

3) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала).

В первично-чувствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генерировать потенциалы действия - электрические нервные импульсы. Во вторично-чувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания рецепторной клетки. Медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану первого нейрона, изменяет ее поляризацию (генерируется постсинаптический потенциал). Постсинаптический потенциал первого нейрона сенсорной системы называют генераторным потенциалом, так как он вызывает генерацию импульсного ответа.

В первично-чувствующих рецепторах рецепторный и генераторный потенциалы - одно и то же.

Генерация возбуждения в рецепторах. Возникновение рецепторного потенциала обусловлено повышением Na + -проводимости дендритов. Возникающее в них возбуждение электротонически распространяется к соме – происходит преобразование или первичная трансформация стимула в рецепторный потенциал. Поэтому рецептор представляет собой преобразователь, датчик. Возбуждение в форме рецепторного потенциала охватывает только сому. В аксоне же первичных рецепторов, начиная от аксонного холмика – места отхода аксона от сомы – происходит трансформация этого возбуждения в серию потенциалов действия.

Очень важно, что после первого потенциала действия мембрана аксона гиперполяризуется существенно ниже уровня потенциала покоя. Благодаря этому обстоятельству Na + -каналы после инактивации восстанавливаются настолько, что фаза деполяризации, наступающая после первого следового гиперполяризационного потенциала, вновь достигает порогового значения, достаточного для генерации следующего потенциала действия. Следовательно, гиперполяризационный следовой потенциал служит основой формирования ритмического возбуждения нервного волокна.

Во вторичных рецепторах возникает только рецепторный потенциал, а серия потенциалов действия формируется в терминалях афферентной нервной клетки, образующей контакт с рецептором. В частности, зрительные и слуховые рецепторы являются вторичными.

Когда генераторный потенциал (ГП) достигает критической величины, он вызывает разряд афферентных импульсов в ближайшем перехвате Ранвье. Частота разряда прямо пропорциональна величине ГП (логарифмическая зависимость, соответствующая закону Вебера-Фехнера). Ощущение тоже увеличивается пропорционально логарифму силы раздражения. Новокаин прерывает поток этих импульсов, с чем связан его аналгетический эффект.

Адаптация рецепторов - общее свойство всех рецепторов, заключающееся в приспособлении к силе раздражителя. Она проявляется в снижении чувствительности к постоянно действующему раздражителю. Человек "привыкает" к действию постоянных раздражителей - запаху, давлению одежды, звуку часов и т.п. и перестает замечать их. При адаптации снижается величина генераторного потенциала и частота импульсов, проходящих по афферентному нерву.

Есть медленно адаптирующиеся рецепторы (болевые) и быстро адаптирующиеся (глаз). Не адаптируются (или почти не адаптируются) только вестибуло- и проприорецепторы. Когда действие постоянного раздражителя прекращается, адаптация исчезает и чувствительность рецептора повышается (эффект возбуждения после торможения).

Когда начинается действие какого-либо стимула рецептор реагирует на него очень энергично. По мере продолжения стимуляции рецептор адаптируется к нему, и активность в сенсорном волокне снижается до более низкого уровня. При коротких и периодических предъявлениях стимула рецептор каждый раз реагирует на него полностью, без адаптации.

Медленно адаптирующиеся рецепторы служат для контроля за длительно сохраняющимися стимулами, например, степенью растяжения мышц, концентрацией Н + . Быстро адаптирующиеся рецепторы свойственны сенсорным системам, регистрация стимулов в которых происходит с высокой чувствительностью и высоким временным разрешением.

Различение сигналов . Важная характеристика сенсорной системы - способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог ).

Зависимость силы ощущения от силы раздражения (закон Вебера-Фехнера) выражается формулой: E=a∙logI +b, где Е - величина ощущения, I - сила раздражения, а и b - константы, различные для разных модальностей стимулов. Согласно этой формуле, ощущение увеличивается пропорционально логарифму интенсивности раздражения.

Абсолютную чувствительность сенсорной системы измеряют порогом реакции. Чувствительность и порог - обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот. Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5 или 0,75 (правильный ответ о наличии стимула в половине или в 3/4 случаев его действия). Более низкие значения интенсивности считаются подпороговыми, а более высокие - надпороговыми. Оказалось, что и в подпороговом диапазоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения). Так, если снизить интенсивность вспышки света настолько, что человек уже не может сказать, видел он ее или нет, от его руки можно зарегистрировать неощущаемую кожно-гальваническую реакцию на данный сигнал. Чувствительность рецепторных элементов к адекватным раздражителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор - одиночным квантом света. Чувствительность слуховых рецепторов также предельна: если бы она была выше, мы слышали бы постоянный шум из-за теплового движения молекул.

Выше упоминалось о различении силы раздражителей. Пространственное различение основано на распределении возбуждения в слое рецепторов и в нейронных слоях. Так, если два раздражителя возбудили два соседних рецептора, то различение этих раздражителей невозможно и они будут восприняты как единое целое. Необходимо, чтобы между двумя возбужденными рецепторами находился хотя бы один невозбужденный. Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный вторым стимулом, не попадал в рефрактерный период от предыдущего раздражения.

Амплитуда (интенсивность) стимула кодируется в виде частоты импульсов или потенциалов действия, направляющихся от рецептора в ЦНС. Повышение амплитуды стимула при условии ее надпорогового значения соответственно повышает частоту потенциалов действия.

32.2. Анализаторы (И.П. Павлов): понятие, классификация анализаторов, три отдела анализаторов и их значение, принципы построения корковых отделов анализаторов.

Анализатором, по И. П. Павлову, называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию.

Методы изучения сенсорных систем . Для изучения сенсорных систем используют электрофизиологические, нейрохимические, поведенческие и морфологические исследования на животных, психофизиологический анализ восприятия у здорового и больного человека, методы картирования его мозга. Сенсорные функции также моделируют и протезируют.

Моделирование сенсорных функций позволяет изучать на биофизических или компьютерных моделях такие функции и свойства сенсорных систем, которые пока недоступны для экспериментальных методов.

Основные принципы строения анализаторов . Основными общими принципами построения сенсорных систем высших позвоночных животных и человека являются следующие:

1) Многослойность, т. е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний - с нейронами моторных областей коры большого мозга.

2) Многоканальность сенсорной системы, т. е. наличие в каждом слое множества (от десятков тысяч до миллионов) нервных клеток, связанных с множеством клеток следующего слоя. Наличие множества таких параллельных каналов обработки и передачи информации обеспечивает сенсорной системе точность и детальность анализа сигналов и большую надежность;

3) Наличие сенсорных воронок . Разное число элементов в соседних слоях формирует «сенсорные воронки». Так, в сетчатке глаза человека насчитывается 130 млн фоторецепторов, а в слое ганглиозных клеток сетчатки нейронов в 100 раз меньше («суживающаяся воронка»). На следующих уровнях зрительной системы формируется «расширяющаяся воронка»: число нейронов в первичной проекционной области зрительной области коры в тысячи раз больше, чем ганглиозных клеток сетчатки. В слуховой и в ряде других сенсорных систем от рецепторов к коре большого мозга идет «расширяющаяся воронка». Физиологический смысл «суживающейся воронки» заключается в уменьшении избыточности информации, а«расширяющейся» - в обеспечении дробного и сложного анализа разных признаков сигнала; дифференциация сенсорной системы по вертикали и по горизонтали.

4) Вертикальная и горизонтальная дифференциация . Дифференциация по вертикали заключается в образовании отделов, каждый из которых состоит из нескольких нейронных слоев. Таким образом, отдел представляет собой более крупное морфофункциональное образование, чем слой нейронов. Каждый отдел (например, обонятельные луковицы, кохлеарные ядра слуховой системы или коленчатые тела) осуществляет определенную функцию. Дифференциация по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев. Так, в зрении работают два параллельных нейронных канала, идущих от фоторецепторов к коре большого мозга и по-разному перерабатывающих информацию, поступающую от центра и от периферии сетчатки глаза.

Общие принципы формирования анализаторов . Общим для большинства проводящих путей анализаторов является то, что они перед попаданием в ядерные зоны коры отдают коллатерали ретикулярной формации и взаимодействуют с ней, а также проходят через таламус.

Корковым представительством анализаторов являются первичные и вторичные поля, преимущественно расположенные в затылочных, постцентральных и височных отделах второго блока (блока приема, переработки и хранения экстероцептивной информации) мозга.

Все анализаторные системы функционируют на основе следующих общих принципов:

1) анализа информации с помощью специальных нейронов-детекторов;

2) параллельной многоканальной переработки информации, обеспечивающей ее надежность;

3) селекции информации в промежутке от рецептора до проекционного поля;

4) последовательного усложнения переработки информации от уровня к уровню;

5) целостной представленности сигнала в ЦНС во взаимосвязи с другими сигналами;

6) реализации принципов повышения надежности обработки разных признаков сигнала.

Основу корковых отделов анализаторов составляют первичные или проекционные зоны коры (поля), выполняющие узкоспециализированную функцию отражения только стимулов одной модальности. Их задача - идентифицировать стимул по его качеству и сигнальному значению, в отличие от периферического рецептора, который дифференцирует стимул лишь по его физическим или химическим характеристикам. Основная функция первичных полей - тончайшее отражение свойств внешней и внутренней среды на уровне ощущения.

Все первичные корковые поля характеризуются топическим (экранным) принципом организации, согласно которому любому участку рецепторной поверхности соответствует определенный участок в первичной коре (по принципу «точка в точку»), что и дало основание назвать первичную кору проекционной. Величина зоны представительства того или иного рецепторного участка в первичной норе зависит от функциональной значимости этого участка, а не от его фактического размера.

К числу первичных относятся поля: 17-е (для зрения). 3-е (для кожно-кинестетической чувствительности) и 41-е (для слуха). Экстероцепторная информация в эти участки мозга попадает после прохождения через релейные ядра таламуса.

Вторичные поля представляют клеточные структуры, морфологически и функционально как бы надстроенные над проекционными. В них происходит последовательное усложнение процесса переработки информации, чему способствует предварительное проведение афферентных импульсов через ассоциативные ядра таламуса. Вторичные поля обеспечивают превращение соматотропических импульсов в такую функциональную организацию, которая на уровне психики эквивалентна процессу восприятия.

На поверхности мозга вторичные поля граничат с проекционными или окружают их. Номера вторичных полей: 18,19 - для зрения, 1,2 и частично 5 - для кожно-кинестетической чувствительности, 42 и 22 - для слуха. Первичные и вторичные поля относятся к ядерным зонам анализаторов, расположенных на трех пространственных полюсах заднего мозга – затылочного, теменного и височного соответственно.

Рис.56. Поля коры головного мозга.

Третичные поля (ассоциативные, зона перекрытия) принимают на себя наиболее сложную функциональную нагрузку. Они находятся вне ядерных зон и в основном расположены в промежутке между вторичными полями или по их периметру. Большая и важнейшая часть третичных полей формируется на границе теменного, затылочного и височного отделов, оказываясь равноудаленной от каждого из указанных полюсов, и не имеет непосредственного выхода на периферию. Их функции почти полностью сводятся к интеграции возбуждений, приходящих от вторичной коры всего комплекса анализаторов. Работа третичных зон своим психологическим эквивалентом имеет восприятие мира во всей полноте и комбинации пространственных, временных и интенсивностных характеристик внешней среды. Все это дает основание рассматривать их как аппарат межанализаторных синтезов.

При действии стимула на рецепторную мембрану происходит повышение проницаемости для ионов натрия или кальция, ионы поступают внутрь нервного окончания, мембрана деполяризуется и формируется рецепторный потенциал.

Рецепторный потенциал обладает всеми свойствами местного возбуждения (зависит от силы раздражителя, способен к суммации, распространяется с затуханием). Затем рецепторный потенциал с помощью местных токов вызывает генерацию ПД в афферентном волокне. Частота ПД зависит от амплитуды рецепторного потенциала.

Открываются Ca/Na каналы → поступают внутрь клетки по пассивному градиенту концентрации → деполяризация мембраны.

Формирование локальных токов выходящего направления → деполяризация до КУД → генерация ПД.

Механизмы возбуждения вторичночувствующих рецепторов

В рецепторной клетке под действием раздражителя открываются натриевые или кальциевые каналы, что приводит к возникновению рецепторного потенциала. Возбуждение клетки вызывает секрецию медиатора (ацетилхолин, глутаминовая кислота), и на мембране чувствительного нейрона формируется генераторный потенциал.

Генераторный потенциал с помощью местных токов действует на мембрану афферентного волокна, где и возникает ПД

Рецепторныйпотенциал возникает при раздражении рецептора как результат деполяризации и повышения проводимости участка его мембраны, который называется рецептивным. Возникший в рецептивных участках мембраны рецепторный потенциал электротонически распространяется на аксонный холмик рецепторного нейрона, где возникает генераторный потенциал . Возникновение генераторного потенциала в области аксонного холмика объясняется тем, что этот участок нейрона имеет более низкие пороги возбуждения и потенциал действия в нем развивается раньше, чем в других частях мембраны нейрона. Чем выше генераторный потенциал, тем интенсивнее частота разрядов распространяющегося потенциала действия от аксона к другим отделам нервной системы. Следовательно, частота разрядов рецепторного нейрона зависит от амплитуды генераторного потенциала.

Афферентное звено рефлекторной дуги представлено сенсорными нейронами, тела которых находятся в чувствительных ганглиях спинномозговых нервов или соответствующих черепномозговых нервах.

Центральное звено рефлекса представлено интернейронами, которые образуют малые возбуждающие и тормозные нейронные сети.

Эфферентное звено представлено одним (для соматических рефлексов) или двумя (для вегетативных рефлексов) нейронами.

Эффекторный орган в соматических рефлексах - это скелетные мышцы, в вегетативных - гладкие мышцы, железы, кардиомиоциты.

Морфофункциональная характеристика симпатического отдела вегетативной нервной

Системы.

Центры СНС локализованы в торако-люмбальном отделе спинного мозга.

Преганглионарные нейроны лежат в боковых рогах от последнего шейного до 4-го поясничного сегмента спинного мозга (С8, Th1-Th12, L1-L4).

Имеется 2 типа ганглиев в СНС:

1. паравертебральные ганглии являются парными и образуют симпатическую нервную цепочку по обе стороны от спинного мозга (симпатический ствол)

2. превертебральные ганглии - непарные, их три (солнечное сплетение, верхний и нижний брыжеечные узлы).

Медиаторы и реактивные системы

ñ Преганглионарные нейроны - холинергические (Ах).

ñ Постганглионарные нейроны - адренергические (Над),

ñ Передача возбуждения на орган осуществляется с помощью альфа- и бета-адренорецепторов, которые являются метаботропными рецепторами.

При возбуждении альфа-адренорецепторов активируется мембранный фермент фосфолипаза С и образуется два вторичных посредника: инозитолтрифосфат (ИТФ) и диацилглицерол (ДАГ) .

При возбуждении бета-адренорецепторов активируется мембранный фермент аденилатциклаза, что приводит к образованию вторичного посредника ц-АМФ . Следствием активации адренорецепторов может быть изменение как натриевой, так и калиевой проводимости мембраны эффекторных клеток.