Световое излучение

ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ, ИХ ПРИРОДА И ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА


Радиация и её разновидности

Ионизирующие излучения

Источники радиационной опасности

Устройство ионизирующих источников излучения

Пути проникновения излучения в организм человека

Меры ионизирующего воздействия

Механизм действия ионизирующего излучения

Последствия облучения

Лучевая болезнь

Обеспечение безопасности при работе с ионизирующими излучениями


Радиация и её разновидности

Радиация – это все виды электромагнитного излучения: свет, радиоволны, энергия солнца и множество иных излучений вокруг нас.

Источниками проникающей радиации, создающими природный фон облучения, являются галактическое и солнечное излучение, наличие радиоактивных элементов в почве, воздухе и материалах, используемых в хозяйственной деятельности, а также изотопов,главным образом,калия, в тканях живого организма. Одним из наиболее весомых естественных источников радиации является радон – газ, не имеющий вкуса и запаха.

Интерес представляет не любая радиация, а ионизирующая, которая, проходя сквозь ткани и клетки живых организмов, способна передавать им свою энергию, разрывая химические связи внутри молекул и вызывая серьёзные изменения в их структуре. Ионизирующее излучение возникает при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.

Ионизирующие излучения

Все ионизирующие излучения делятся на фотонные и корпускулярные.

К фотонному ионизирующему излучению относятся:

а) Y-излучение, испускаемое при распаде радиоактивных изотопов или аннигиляции частиц. Гамма-излучение по своей природе является коротковолновым электромагнитным излучением, т.е. потоком высокоэнергетических квантов электромагнитной энергии, длина волны которых значительно меньше межатомных расстояний, т.е. y < 10 см. Не имея массы, Y-кванты двигаются со скоростью света, не теряя её в окружающей среде. Они могут лишь поглощаться ею или отклоняться в сторону, порождая пары ионов: частица- античастица, причём последнее наиболее значительно при поглощении Y- квантов в среде. Таким образом, Y- кванты при прохождении через вещество передают энергию электронам и, следовательно, вызывают ионизацию среды. Благодаря отсутствию массы, Y- кванты обладают большой проникающей способностью (до 4- 5 км в воздушной среде);

б) рентгеновское излучение, возникающее при уменьшении кинетической энергии заряженных частиц и / или при изменении энергетического состояния электронов атома.

Корпускулярное ионизирующее излучение состоит из потока заряженных частиц (альфа-,бета-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят:

а) нейтроны – единственные незаряженные частицы, образующиеся при некоторых реакциях деления ядер атомов урана или плутония. Поскольку эти частицы электронейтральны, они глубоко проникают во всякое вещество, включая живые ткани. Отличительной особенностью нейтронного излучения является его способность превращать атомы стабильных элементов в их радиоактивные изотопы, т.е. создавать наведённую радиацию, что резко повышает опасность нейтронного излучения. Проникающая способность нейтронов сравнима с Y- излучением. В зависимости от уровня носимой энергии условно различают нейтроны быстрые (обладающие энергией от 0,2 до 20 Мэ В) и тепловые (от 0,25 до 0,5 Мэ В). Это различие учитывается при проведении защитных мероприятий. Быстрые нейтроны замедляются, теряя энергию ионизации, веществами с малым атомным весом (так называемыми водородосодержащими: парафин, вода, пластмассы и др.). Тепловые нейтроны поглощаются материалами, содержащими бор и кадмий (борная сталь, бораль, борный графит, сплав кадмия со свинцом).

Альфа -, бета-частицы и гамма - кванты обладают энергией всего в несколько мегаэлектронвольт, и создавать наведённую радиацию не могут;

б) бета частицы - электроны, испускаемые во время радиоактивного распада ядерных элементов с промежуточной ионизирующей и проникающей способностью (пробег в воздухе до 10-20 м).

в) альфа частицы - положительно заряженные ядра атомов гелия, а в космическом пространстве и атомов других элементов, испускаемые при радиоактивном распаде изотопов тяжёлых элементов – урана или радия. Они обладают малой проникающей способностью (пробег в воздухе - не более 10 см), даже человеческая кожа является для них непреодолимым препятствием. Опасны они лишь при попадании внутрь организма, так как способны выбивать электроны из оболочки нейтрального атома любого вещества, в том числе и тела человека, и превращать его в положительно заряженный ион со всеми вытекающими последствиями, о которых будет сказано далее. Так, альфа частица с энергией 5 МэВ образует 150 000 пар ионов.

Характеристика проникающей способности различных видов ионизирующего излучения

Количественное содержание радиоактивного материала в организме человека или веществе определяется термином «активность радиоактивного источника» (радиоактивность). За единицу радиоактивности в системе СИ принят беккерель (Бк), соответствующий одному распаду в 1 с. Иногда на практике применяется старая единица активности – кюри (Ки). Это активность такого количества вещества, в котором за 1с происходит распад 37 млрд. атомов. Для перевода пользуются зависимостью: 1 Бк = 2,7 х 10 Ки или 1 Ки = 3,7 х 10 Бк.

Каждый радионуклид имеет неизменный, присущий только ему период полураспада (время, необходимое для потери веществом половины активности). Например, у урана-235 он составляет 4 470 лет, тогда как у йода-131 – всего лишь 8 суток.

Источники радиационной опасности

1. Главная причина опасности – радиационная авария. Радиационная авария – потеря управления источником ионизирующего излучения (ИИИ), вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. При авариях, вызванных разрушением корпуса реактора или расплавлением активной зоны выбрасываются:

1) Фрагменты активной зоны;

2) Топливо (отходы) в виде высокоактивной пыли, которая может долгое время находиться в воздухе в виде аэрозолей, затем после прохождения основного облака выпадать в виде дождевых (снеговых) осадков, а при попадании в организм вызывать мучительный кашель, иногда по тяжести сходный с приступом астмы;

3) лавы, состоящие из двуокиси кремния, а также расплавленный в результате соприкосновения с горячим топливом бетон. Мощность дозы вблизи таких лав достигает 8000 Р/час и даже пятиминутное пребывание рядом губительно для человека. В первый период после выпадения осадков РВ наибольшую опасность представляет йод-131, являющийся источником альфа- и бэта-излучения. Периоды полувыведения его из щитовидной железы составляют: биологический – 120 суток, эффективный – 7,6. Это требует быстрейшего проведения йодной профилактики всего населения, оказавшегося в зоне аварии.

2. Предприятия по разработке месторождений и обогащению урана. Уран имеет атомный вес 92 и три естественных изотопов: уран-238 (99,3%), уран-235 (0,69%) и уран-234 (0,01%). Все изотопы являются альфа-излучателями с незначительной радиоактивностью (2800кг урана по активности эквивалентны 1 г радия-226). Период полураспада урана-235 = 7,13 х 10 лет. Искусственные изотопы уран-233 и уран-227 имеют период полураспада 1,3 и 1,9 мин. Уран – мягкий металл, по внешнему виду похожий на сталь. Содержание урана в некоторых природных материалах доходит до 60 %, но в большинстве урановых руд оно не превышает 0,05-0,5 %. В процессе добычи при получении 1 тонны радиоактивного материала образуется до 10-15 тыс. тонн отходов, а при переработке от 10 до 100 тыс. тонн. Из отходов (содержащих незначительное количество урана, радия, тория и других радиоактивных продуктов распада) выделяется радиоактивный газ – радон-222, который при вдохе вызывает облучение тканей лёгких. При обогащении руды радиоактивные отходы могут попасть в близлежащие реки и озёра. При обогащении уранового концентрата возможна некоторая утечка газообразного гексафторида урана из конденсационно-испарительной установки в атмосферу. Получаемые при производстве тепловыделяющих элементов некоторые урановые сплавы, стружки, опилки могут воспламеняться во время транспортировки или хранения, в результате в окружающую среду могут быть выброшены значительные количества отходов сгоревшего урана.

3. Ядерный терроризм. Участились случаи кражи ядерных материалов, пригодных для изготовления ядерных боеприпасов даже кустарным способом, а также угрозы вывода из строя ядерных предприятий, кораблей с ядерными установками и АЭС с целью получения выкупа. Опасность ядерного терроризма существует и на бытовом уровне.

4. Испытания ядерного оружия. За последнее время достигнута миниатюризация ядерных зарядов для испытаний.

Устройство ионизирующих источников излучения

По устройству ИИИ бывают двух типов – закрытые и открытые.

Закрытые источники помещены в герметизированные контейнеры и представляют опасность лишь в случае отсутствия должного контроля за их эксплуатацией и хранением. Свою лепту вносят и воинские части, передающие списанные приборы в подшефные учебные заведения. Утери списанного, уничтожение за ненадобностью, кражи с последующей миграцией. Например, в Братске на заводе стройконструкций, ИИИ, заключенный в свинцовую оболочку, хранился в сейфе вместе с драгоценными металлами. И когда грабители взломали сейф, то они решили, что эта массивная болванка из свинца – тоже драгоценная. Украли её, а затем честно поделили, распилив пополам свинцовую «рубашку» и заточенную в ней ампулу с радиоактивным изотопом.

Работа с открытыми ИИИ может привести к трагическим последствиям при незнании или нарушении соответствующих инструкций по правилам обращения с данными источниками. Поэтому прежде, чем начинать любую работу с использованием ИИИ, необходимо тщательно изучить все должностные инструкции и положения техники безопасности и неукоснительно выполнять их требования. Эти требования изложены в «Санитарных правилах обращения с радиоактивными отходами (СПО ГО-85)». Предприятие «Радон» по заявкам производит индивидуальный контроль лиц, территорий, объектов, проверку, дозировку и ремонт приборов. Работы в области обращения ИИИ, средств радиационной защиты, добычи, производства, транспортирования, хранения, использования, обслуживания, утилизации, захоронения производятся только на основании лицензии.

Пути проникновения излучения в организм человека

Чтобы правильно понимать механизм радиационных поражений, необходимо иметь чёткое представление о существовании двух путей, по которым излучение проникает в ткани организма и воздействует на них.

Первый путь – внешнее облучение от источника, расположенного вне организма (в окружающем пространстве). Это облучение может быть связано с рентгеновскими и гамма лучами, а также некоторыми высокоэнергетическими бета частицами, способными проникать в поверхностные слои кожи.

Второй путь – внутреннее облучение, вызванное попаданием радиоактивных веществ внутрь организма следующими способами:

В первые дни после радиационной аварии наиболее опасны радиоактивные изотопы йода, поступающие в организм с пищей и водой. Весьма много их в молоке, что особенно опасно для детей. Радиоактивный йод накапливается главным образом в щитовидной железе, масса которой составляет всего 20 г. Концентрация радионуклидов в этом органе может быть в 200 раз выше, чем в других частях человеческого организма;

Через повреждения и порезы на коже;

Абсорбция через здоровую кожу при длительном воздействии радиоактивных веществ (РВ). В присутствии органических растворителей (эфир, бензол, толуол, спирт) проницаемость кожи для РВ увеличивается. Причем некоторые РВ, поступившие в организм через кожу, попадают в кровеносное русло и, в зависимости от их химических свойств, поглощаются и накапливаются в критических органах, что приводит к получению высоких локальных доз радиации. Например, растущие кости конечностей хорошо усваивают радиоактивный кальций, стронций, радий, почки – уран. Другие химические элементы, такие как натрий и калий, будут распространяться по всему телу более или менее равномерно, так как они содержатся во всех клетках организма. При этом наличие в крови натрия-24 означает, что организм дополнительно подвергся нейтронному облучению (т.е. цепная реакция в реакторе в момент облучения не была прервана). Лечить больного, подвергшегося нейтронному облучению, особенно тяжело, поэтому необходимо проводить определение наведенной активности биоэлементов организма (Р, S и др.);

Через лёгкие при дыхании. Попадание твердых радиоактивных веществ в лёгкие зависит от степени дисперсности этих частиц. Из проводившихся над животными испытаний установлено, что частицы пыли размером менее 0.1 микрона ведут себя так же как и молекулы газов. При вдохе они попадают с воздухом в лёгкие, а при выдохе вместе с воздухом удаляются. В лёгких может оставаться лишь незначительная часть твёрдых частиц. Крупные частицы размером более 5 микрон задерживаются носовой полостью. Инертные радиоактивные газы (аргон, ксенон, криптон и др.), попавшие через лёгкие в кровь, не являются соединениями, входящими в состав тканей, и со временем удаляются из организма. Не задерживаются в организме длительное время и радионуклиды, однотипные с элементами, входящими в состав тканей и употребляемые человеком с пищей (натрий, хлор, калий и др.). Они со временем полностью удаляются из организма. Некоторые радионуклиды (например, отлагающиеся в костных тканях радий, уран, плутоний, стронций, иттрий, цирконий) вступают в химическую связь с элементами костной ткани и с трудом выводятся из организма. При проведении медицинского обследования жителей районов, пострадавших от аварии на Чернобыльской АЭС, во Всесоюзном гематологическом центре АМН было обнаружено, что при общем облучении организма дозой в 50 рад отдельные его клетки оказались облученными дозой в 1 000 и более рад. В настоящее время для различных критических органов разработаны нормативы, определяющие предельно допустимое содержание в них каждого радионуклида. Эти нормы изложены в разделе 8 «Числовые значения допустимых уровней» Норм радиационной безопасности НРБ – 76/87.

Внутреннее облучение является более опасным, а его последствия более тяжёлыми по следующим причинам:

Резко увеличивается доза облучения, определяемая временем пребывания радионуклида в организме (радий-226 или плутоний-239 в течение всей жизни);

Практически бесконечно мало расстояние до ионизируемой ткани (так называемое, контактное облучение);

В облучении участвуют альфа частицы, самые активные и поэтому самые опасные;

Радиоактивные вещества распространяются не равномерно по всему организму, а избирательно, концентрируются в отдельных (критических) органах, усиливая локальное облучение;

Невозможно использовать какие-либо меры защиты, применяемые при внешнем облучении: эвакуацию, средства индивидуальной защиты (СИЗ) и др.

Меры ионизирующего воздействия

Мерой ионизирующего воздействия внешнего излучения является экспозиционная доза, определяемая по ионизации воздуха. За единицу экспозиционной дозы (Дэ) принято считать рентген (Р) – количество излучения, при котором в 1 куб.см. воздуха при температуре 0 С и давлении 1 атм образуются 2,08 х 10 пар ионов. Согласно руководящим документам Международной компании по радиологическим единицам (МКРЕ) РД – 50-454-84 после 1 января 1990 г. использовать такие величины, как экспозиционная доза и её мощность, в нашей стране не рекомендуется (принято, что экспозиционная доза есть поглощённая доза в воздухе). Большая часть дозиметрической аппаратуры в РФ имеет градуировку в рентгенах, рентген / часах, и от этих единиц пока не отказываются.

Мерой ионизирующего воздействия внутреннего облучения является поглощённая доза. За единицу поглощенной дозы принят рад. Это доза излучения, переданная массе облучаемого вещества в 1 кг и измеряемая энергией в джоулях любого ионизирующего излучения. 1 рад = 10 Дж/кг. В системе СИ единицей поглощённой дозы является грей (Гр), равный энергии в 1 Дж/кг.

1 Гр = 100 рад.

1 рад = 10 Гр.

Для перевода количества ионизирующей энергии в пространстве (экспозиционная доза) в поглощённую мягкими тканями организма применяют коэффициент пропорциональности К = 0,877, т.е.:

1 рентген = 0,877 рад.

В связи с тем, что различные виды излучений обладают разной эффективностью (при равных затратах энергии на ионизацию производят различное воздействие), введено понятие «эквивалентная доза». Единица её измерения – бэр. 1 бэр – это доза излучения любого вида, воздействие которой на организм эквивалентно действию 1 рад гамма излучения. Поэтому при оценке общего эффекта воздействия радиационного излучения на живые организмы при суммарном облучении всеми видами излучений учитывается коэффициент качества (Q), равный 10 для нейтронного излучения (нейтроны примерно в 10 раз эффективнее в плане радиационного поражения) и 20 – для альфа излучения. В системе СИ единицей эквивалентной дозы является зиверт (Зв), равный 1 Гр х Q.

Наряду с величиной энергии, видом облучения, материалом и массой органа важным фактором является, так называемый биологический период полураспада радиоизотопа – продолжительность времени, необходимого для выведения (с потом, слюной, мочой, калом и др.) из организма половины радиоактивного вещества. Уже через 1-2 часа после попадания РВ в организм они обнаруживаются в его выделениях. Сочетание физического периода полураспада с биологическим даёт понятие «эффективный период полураспада» - наиболее важный в определении результирующей величины облучения, которому подвергается организм, особенно критические органы.

Наряду с понятием «активность» существует понятие «наведённая активность» (искусственная радиоактивность). Она возникает при поглощении медленных нейтронов (продуктов ядерного взрыва или ядерной реакции), ядрами атомов нерадиоактивных веществ и превращении их в радиоактивные калий-28 и натрий-24, образующиеся, в основном, в грунте.

Таким образом, степень, глубина и форма лучевых поражений, развивающихся у биологических объектов (в том числе у человека) при воздействии на них радиации, зависят от величины поглощённой энергии излучения (дозы).

Механизм действия ионизирующего излучения

Принципиальной особенностью действия ионизирующего излучения является его способность проникать в биологические ткани, клетки, субклеточные структуры и, вызывая одномоментную ионизацию атомов, за счёт химических реакций повреждать их. Ионизирована может быть любая молекула, а отсюда все структурно-функциональные разрушения в соматических клетках, генетические мутации, воздействия на зародыш, болезнь и смерть человека.

Механизм такого воздействия заключается в поглощении энергии ионизации организмом и разрыве химических связей его молекул с образованием высокоактивных соединений, так называемых свободных радикалов.

Организм человека на 75% состоит из воды, следовательно, решающее значение в этом случае будет иметь косвенное воздействие радиации через ионизацию молекулы воды и последующие реакции со свободными радикалами. При ионизации молекулы воды образуется положительный ион Н О и электрон, который, потеряв энергию, может образовать отрицательный ион Н О. Оба эти иона являются неустойчивыми и распадаются на пару стабильных ионов, которые рекомбинируют (восстанавливаются) с образованием молекулы воды и двух свободных радикалов ОН и Н, отличающихся исключительно высокой химической активностью. Непосредственно или через цепь вторичных превращений, таких как образование перекисного радикала (гидратного оксида воды), а затем перекиси водорода Н О и других активных окислителей группы ОН и Н, взаимодействуя с молекулами белков, они ведут к разрушению ткани в основном за счет энергично протекающих процессов окисления. При этом одна активная молекула с большой энергией вовлекает в реакцию тысячи молекул живого вещества. В организме окислительные реакции начинают превалировать над восстановительными. Наступает расплата за аэробный способ биоэнергетики – насыщение организма свободным кислородом.

Воздействие ионизирующего излучения на человека не ограничивается изменением структуры молекул воды. Меняется структура атомов, из которых состоит наш организм. В результате происходит разрушение ядра, клеточных органелл и разрыв наружной мембраны. Так как основная функция растущих клеток – способность к делению, то утрата её приводит к гибели. Для зрелых неделящихся клеток разрушение вызывает потерю тех или иных специализированных функций (выработку определённых продуктов, распознавание чужеродных клеток, транспортные функции и тд.). Наступает радиационно индуцированная гибель клеток, которая в отличие от физиологической гибели необратима, так как реализация генетической программы терминальной дифференцировки в этом случае осуществляется на фоне множественных изменений нормального течения биохимических процессов после облучения.

Кроме того, дополнительное поступление энергии ионизации в организм нарушает сбалансированность энергетических процессов, происходящих в нём. Ведь наличие энергии в органических веществах зависит в первую очередь не от их элементарного состава, а от строения, расположения и характера связей атомов, т.е. тех элементов, которые легче всего поддаются энергетическому воздействию.

Последствия облучения

Одно из наиболее ранних проявлений облучения – массовая гибель клеток лимфоидной ткани. Образно говоря, эти клетки первыми принимают на себя удар радиации. Гибель лимфоидов ослабляет одну из основных систем жизнеобеспечения организма – иммунную систему, так как лимфоциты – такие клетки, которые способны реагировать на появление чужеродных для организма антигенов выработкой строго специфических антител к ним.

В результате воздействия энергии радиационного излучения в малых дозах в клетках происходят изменения генетического материала (мутации), угрожающие их жизнеспособности. Как следствие наступает деградация (повреждение) ДНК хроматина (разрывы молекул, повреждения), которые частично или полностью блокируют или извращают функцию генома. Происходит нарушение репарации ДНК – способности её к восстановлению и залечиванию повреждений клеток при повышении температуры тела, воздействии химических веществ и пр.

Генетические мутации в половых клетках оказывают влияние на жизнь и развитие будущих поколений. Этот случай характерен, например, если человек подвергся воздействию небольших доз радиации во время экспозиции в медицинских целях. Существует концепция – при получении дозы в 1 бэр предыдущим поколением она даёт дополнительно в потомстве 0.02 % генетических аномалий, т.е. у 250 младенцев на миллион. Эти факты и многолетние исследования данных явлений привели ученых к выводу, что безопасных доз радиации не существует.

Воздействие ионизирующих излучений на гены половых клеток может вызвать вредные мутации, которые будут передаваться из поколения в поколение, увеличивая «мутационный груз» человечества. Опасными для жизни являются условия, увеличивающие «генетическую нагрузку» вдвое. Такой удваивающей дозой является, по выводам научного комитета ООН по атомной радиации, доза в 30 рад при остром облучении и 10 рад при хроническом (в течение репродуктивного периода). С ростом дозы повышается не тяжесть, а частота возможного проявления.

Мутационные изменения происходят и в растительных организмах. В лесах, подвергшихся выпадению радиоактивных осадков под Чернобылем, в результате мутации возникли новые абсурдные виды растений. Появились ржаво-красные хвойные леса. В расположенном недалеко от реактора пшеничном поле через два года после аварии ученые обнаружили около тысячи различных мутаций.

Влияние на зародыш и плод вследствие облучения матери в период беременности. Радиочувствительность клетки меняется на разных этапах процесса деления (митоза). Наиболее чувствительна клетка в конце покоя и начале первого месяца деления. Особенно чувствительна к облучению зигота – эмбриональная клетка, образующаяся после слияния сперматозоида с яйцом. При этом развитие зародыша в этот период и влияние на него радиационного, в том числе и рентгеновского, облучения можно разделить на три этапа.

1-й этап – после зачатия и до девятого дня. Только что сформировавшийся зародыш под воздействием радиации погибает. Смерть в большинстве случаев остается незамеченной.

2-й этап – с девятого дня по шестую неделю после зачатия. Это – период формирования внутренних органов и конечностей. При этом под воздействием дозы облучения в 10 бэр у зародыша появляется целый спектр дефектов – расщепление нёба, остановка развития конечностей, нарушение формирования мозга и др. Одновременно возможна задержка роста организма, что выражается в уменьшении размеров тела при рождении. Результатом облучения матери в этот период беременности также может быть смерть новорожденного в момент родов или спустя некоторое время после них. Однако, рождение живого ребёнка с грубыми дефектами, вероятно, самое большое несчастье, гораздо худшее, чем смерть эмбриона.

3-й этап – беременность после шести недель. Дозы радиации, полученные матерью, вызывают стойкое отставание организма в росте. У облученной матери ребёнок при рождении имеет размеры меньше нормы и остается ниже среднего роста на всю жизнь. Возможны патологические изменения в нервной, эндокринной системах и т.д. Многие специалисты-радиологи предполагают, что большая вероятность рождения неполноценного ребенка служит основанием для прерывания беременности, если доза, полученная эмбрионом в течение первых шести недель после зачатия, превышает 10 рад. Такая доза вошла в законодательные акты некоторых скандинавских стран. Для сравнения, при рентгеноскопии желудка основные участки костного мозга, живот, грудная клетка получают дозу излучения в 30-40 рад.

Иногда возникает практическая проблема: женщина проходит серию сеансов рентгенографии, включающих снимки желудка и органов таза, а впоследствии обнаруживается, что она беременна. Ситуация усугубляется, если облучение произошло в первые недели после зачатия, когда беременность может оставаться незамеченной. Единственное решение данной проблемы – не подвергать женщину облучению в указанный период. Этого можно достичь в том случае, если женщина репродуктивного возраста будет проходить рентгенографию желудка или брюшной полости только в течение первых десяти дней после начала менструального периода, когда нет сомнений в отсутствии беременности. В медицинской практике это называется правилом «десяти дней». При неотложной ситуации рентгеновские процедуры не могут быть перенесены на недели или месяцы, однако со стороны женщины будет благоразумным рассказать врачу перед проведением рентгенографии о своей возможной беременности.

По степени чувствительности к ионизирующему излучению клетки и ткани человеческого организма неодинаковы.

К особо чувствительным органам относятся семенники. Доза в 10-30 рад может снизить сперматогенез в течение года.

Высокой чувствительностью к облучению обладает иммунная система.

В нервной системе наиболее чувствительной оказалась сетчатка глаза, так как при облучении наблюдалось ухудшение зрения. Нарушения вкусовой чувствительности наступали при лучевой терапии грудной клетки, а повторные облучения дозами 30-500 Р снижали тактильную чувствительность.

Изменения в соматических клетках могут способствовать возникновению рака. Раковая опухоль возникает в организме в тот момент, когда соматическая клетка, выйдя из-под контроля организма, начинает быстро делиться. Первопричиной этого являются вызванные многократными или сильным разовым облучением мутации в генах, приводящие к тому, что раковые клетки теряют способность даже в случае нарушения равновесия погибать физиологической, а точнее программированной смертью. Они становятся как бы бессмертными, постоянно делясь, увеличиваясь в количестве и погибая лишь от недостатка питательных веществ. Так происходит рост опухоли. Особенно быстро развивается лейкоз (рак крови) – болезнь, связанная с избыточным появлением в костном мозге, а затем и в крови неполноценных белых клеток – лейкоцитов. Правда, в последнее время выяснилось, что связь между радиацией и заболеванием раком более сложная, чем предполагалось ранее. Так, в специальном докладе японско-американской ассоциации ученых сказано, что только некоторые виды рака: опухоли молочной и щитовидной желёз, а также лейкемия – развиваются в результате радиационного поражения. Причем опыт Хиросимы и Нагасаки показал, что рак щитовидной железы наблюдается при облучении в 50 и более рад. Рак молочной железы, от которого умирают около 50% заболевших, наблюдается у женщин, многократно подвергавшихся рентгенографическим обследованиям.

Характерным для радиационных поражений является то, что лучевые травмы сопровождаются тяжелыми функциональными расстройствами, требуют сложного и длительного (более трёх месяцев) лечения. Жизнеспособность облученных тканей значительно снижается. Кроме того, через много лет и десятилетий после получения травмы возникают осложнения. Так, наблюдались случаи возникновения доброкачественных опухолей через 19 лет после облучения, а развитие лучевого рака кожи и молочной железы у женщин – через 25-27 лет. Нередко травмы обнаруживаются на фоне или после воздействия дополнительных факторов нерадиационной природы (диабет, атеросклероз, гнойная инфекция, термические или химические травмы в зоне облучения).

Необходимо также учитывать, что люди, пережившую радиационную аварию, испытывают дополнительный стресс в течение нескольких месяцев и даже лет после неё. Такой стресс может включить биологический механизм, который приводит к возникновению злокачественных заболеваний. Так, в Хиросиме и Нагасаки крупная вспышка заболеваний раком щитовидной железы наблюдалась спустя 10 лет после атомной бомбардировки.

Исследования, проведённые радиологами на основании данных Чернобыльской аварии, свидетельствуют о снижении порога последствий от воздействия облучения. Так, установлено, что облучение в 15 бэр может вызвать нарушения в деятельности иммунной системы. Уже при получении дозы в 25 бэр у ликвидаторов аварии наблюдалось снижение в крови лимфоцитов – антител к бактериальным антигенам, а при 40 бэр увеличивается вероятность возникновения инфекционных осложнений. При воздействии постоянного облучения дозой от 15 до 50 бэр часто отмечались случаи неврологических расстройств, вызванных изменениями в структурах головного мозга. Причём эти явления наблюдались в отдалённые сроки после облучения.

Лучевая болезнь

В зависимости от дозы и времени облучения наблюдаются три степени заболевания: острая, подострая и хроническая. В очагах поражения (при получении высоких доз) возникает, как правило, острая лучевая болезнь (ОЛБ).

Различают четыре степени ОЛБ:

Лёгкая (100 – 200 рад). Начальный период – первичная реакция как и при ОЛБ всех других степеней – характеризуется приступами тошноты. Появляются головная боль, рвота, общее недомогание, незначительное повышение температуры тела, в большинстве случаев – анорексия (отсутствие аппетита, вплоть до отвращения к пище), возможны инфекционные осложнения. Первичная реакция возникает через 15 – 20 минут после облучения. Её проявления постепенно исчезают через несколько часов или суток, а могут вообще отсутствовать. Затем наступает скрытый период, так называемый период мнимого благополучия, продолжительность которого обусловливается дозой облучения и общим состоянием организма (до 20 суток). За это время эритроциты исчерпывают свой срок жизни, переставая подавать кислород клеткам организма. ОЛБ лёгкой степени излечима. Возможны негативные последствия – лейкоцитоз крови, покраснения кожи, снижение работоспособности у 25% поражённых через 1,5 – 2 часа после облучения. Наблюдается высокое содержание гемоглобина в крови в течение 1 года с момента облучения. Сроки выздоровления – до трёх месяцев. Большое значение при этом имеют личностная установка и социальная мотивация пострадавшего, а также его рациональное трудоустройство;

Средняя (200 – 400 рад). Короткие приступы тошноты, проходящие через 2-3 дня после облучения. Скрытый период – 10-15 суток (может отсутствовать), в течение которого лейкоциты, вырабатываемые лимфатическими узлами, погибают и прекращают отторгать попадающую в организм инфекцию. Тромбоциты перестают свёртывать кровь. Всё это – результат того, что убитые радиацией костный мозг, лимфатические узлы и селезёнка не вырабатывают новые эритроциты, лейкоциты и тромбоциты на смену отработавшим. Развиваются отёк кожи, пузыри. Такое состояние организма, получившее название «костномозговой синдром», приводит 20% поражённых к смерти, которая наступает в результате поражения тканей кроветворных органов. Лечение заключается в изоляции больных от внешней среды, введении антибиотиков и переливании крови. Молодые и пожилые мужчины более подвержены заболеванию ОЛБ средней степени, нежели мужчины среднего возраста и женщины. Потеря трудоспособности наступает у 80% поражённых через 0,5 – 1 час после облучения и после выздоровления долгое время остаётся сниженной. Возможно развитие катаракты глаз и местных дефектов конечностей;

Тяжёлая (400 – 600 рад). Симптомы, характерные для кишечно-желудочного расстройства: слабость, сонливость, потеря аппетита, тошнота, рвота, длительный понос. Скрытый период может длиться 1 – 5 суток. Через несколько дней возникают признаки обезвоживания организма: потеря массы тела, истощение и полное обессиливание. Эти явления – результат отмирания ворсинок стенок кишечника, всасывающих питательные вещества из поступающей пищи. Их клетки под воздействием радиации стерилизуются и теряют способность делиться. Возникают очаги прободения стенок желудка, и бактерии поступают из кишечника в кровоток. Появляются первичные радиационные язвы, гнойная инфекция от радиационных ожогов. Потеря трудоспособности через 0,5-1 час после облучения наблюдается у 100% пострадавших. У 70% поражённых смерть наступает через месяц от обезвоживания организма и отравления желудка (желудочно-кишечный синдром), а также от радиационных ожогов при гамма облучении;

Крайне тяжёлая (более 600 рад). В считанные минуты после облучения возникают сильная тошнота и рвота. Понос – 4-6 раз в сутки, в первые 24 часа – нарушение сознания, отёк кожи, сильные головные боли. Данные симптомы сопровождаются дезориентацией, потерей координации движений, затруднением глотания, расстройством стула, судорожными припадками и в конечном итоге наступает смерть. Непосредственная причина смерти – увеличение количества жидкости в головном мозге вследствие её выхода из мелких сосудов, что приводит к повышению внутричерепного давления. Такое состояние получило название «синдром нарушения центральной нервной системы».

Необходимо отметить, что поглощённая доза, вызывающая поражение отдельных частей организма и смерть, превышает смертельную дозу для всего тела. Смертельные дозы для отдельных частей тела следующие: голова – 2000 рад, нижняя часть живота – 3000 рад, верхняя часть живота – 5000 рад, грудная клетка – 10000 рад, конечности – 20000 рад.

Достигнутый на сегодня уровень эффектности лечения ОЛБ считается предельным, так как основан на пассивной стратегии – надежде на самостоятельное выздоровление клеток в радиочувствительных тканях (главным образом костном мозге и лимфатических узлах), на поддержку других систем организма, переливание тромбоцитной массы для предотвращения кровоизлияния, эритроцитарной – для предотвращения кислородного голодания. После этого остаётся только ждать, когда заработают все системы клеточного обновления и ликвидируют гибельные последствия радиационного облучения. Исход болезни определяется к концу 2-3 месяца. При этом могут наступить: полное клиническое выздоровление пострадавшего; выздоровление, при котором его трудоспособность в той или иной мере будет ограниченной; неблагоприятный исход с прогрессированием заболевания или развитием осложнений, приводящих к смерти.

Пересадке здорового костного мозга мешает иммунологический конфликт, который в облучённом организме особенно опасен, так как истощает и без того подорванные силы иммунитета. Российские учёные-радиологи предлагают новый путь лечения больных лучевой болезнью. Если забрать у облучённого часть костного мозга, то в кроветворной системе после этого вмешательства начинаются процессы более раннего восстановления, чем при естественном развитии событий. Извлечённую часть костного мозга помещают в искусственные условия, а затем через определённый срок возвращают в тот же организм. Иммунологического конфликта (отторжения) не происходит.

В настоящее время учёными проводятся работы, и получены первые результаты по применению фармацевтических радиопротекторов, позволяющих человеку переносить дозы облучения, превышающие летальную примерно вдвое. Это – цистеин, цистамин, цистофос и ряд других веществ, содержащих сульфидгидрильные группы (SH) на конце длинной молекулы. Эти вещества, словно «мусорщики», убирают образующиеся свободные радикалы, которые во многом ответственны за усиление окислительных процессов в организме. Однако крупным недостатком указанных протекторов является необходимость введения его в организм внутривенно, так как сульфидгидрильная группа, добавляемая в них для уменьшения токсичности, разрушается в кислой среде желудка и протектор теряет защитные свойства.

Ионизирующая радиация имеет негативное воздействие также на жиры и липоеды (жироподобные вещества), содержащиеся в организме. Облучение нарушает процесс эмульгирования и продвижения жиров в области криптального отдела слизистой оболочки кишечника. В результате в просвет кровеносных сосудов попадают капли неэмульгированного и грубо эмульгированного жира, усваиваемого организмом.

Повышение окисления жирных кислот в печени приводит при инсулиновой недостаточности к повышенному кетогенезу печени, т.е. избыток свободных жирных кислот в крови понижает активность инсулина. А это в свою очередь ведёт к широко распространённому сегодня заболеванию сахарным диабетом.

Наиболее характерными заболеваниями, сопутствующими поражению от облучения, являются злокачественные новообразования (щитовидной железы, органов дыхания, кожи, кроветворных органов), нарушения обмена веществ и иммунитета, болезни органов дыхания, осложнения течения беременности, врождённые аномалии, психические расстройства.

Восстановление организма после облучения – процесс сложный, и протекает он неравномерно. Если восстановление эритроцитов и лимфоцитов в крови начинается через 7 – 9 месяцев, то восстановление лейкоцитов – через 4 года. На длительность этого процесса оказывают влияние не только радиационные, но и психогенные, социально-бытовые, профессиональные и другие факторы пострадиационного периода, которые можно объединить в одно понятие «качество жизни» как наиболее ёмко и полно выражающее характер взаимодействия человека с биологическими факторами среды, социальными и экономическими условиями.

Обеспечение безопасности при работе с ионизирующими излучениями

При организации работ используются следующие основные принципы обеспечения радиационной безопасности: выбор или уменьшение мощности источников до минимальных величин; сокращение времени работы с источниками; увеличение расстояния от источника до работающего; экранирование источников излучения материалами, поглощающими или ослабляющими ионизирующие излучения.

В помещениях, где проводится работа с радиоактивными веществами и радиоизотопными приборами, ведётся контроль за интенсивностью различных видов излучения. Эти помещения должны быть изолированы от других помещений и оснащены приточно-вытяжной вентиляцией. Другими коллективными средствами защиты от ионизирующего излучения в соответствии с ГОСТ 12.4.120 являются стационарные и передвижные защитные экраны, специальные контейнеры для транспортировки и хранения источников излучения, а также для сбора и хранения радиоактивных отходов, защитные сейфы и боксы.

Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Защита от альфа излучения достигается применением оргстекла толщиной несколько миллиметров. Для защиты от бэта-излучения экраны изготовляют из алюминия или оргстекла. От нейтронного излучения защищает вода, парафин, бериллий, графит, соединения бора, бетон. От рентгеновских и гамма-излучений защищают свинец и бетон. Для смотровых окон используют свинцовое стекло.

При работе с радионуклидами следует применять спецодежду. В случае загрязнения рабочего помещения радиоактивными изотопами поверх хлопчатобумажного комбинезона следует надевать пленочную одежду: халат, костюм, фартук, брюки, нарукавники.

Пленочная одежда изготавливается из пластиков или резиновых тканей, легко очищаемых от радиоактивного загрязнения. В случае применения пленочной одежды необходимо предусмотреть возможность подачи воздуха под костюм.

В комплекты спецодежды входят респираторы, пневмошлемы и другие средства индивидуальной защиты. Для защиты глаз следует применять очки со стеклами, содержащими фосфат вольфрама или свинец. При использовании индивидуальных средств защиты необходимо строго соблюдать последовательность их надевания и снятия, и дозиметрического контроля.

Еще из раздела Безопасность жизнедеятельности:

  • Реферат: Обеспечение безопасности общесудовых и погрузочно-разгрузочных работ
  • Контрольная работа: Проектирование и создании безопасных условий труда на предприятии
  • Курсовая работа: Оцінка хімічної обстановки внаслідок аварії на хімічно-небезпечному об"єкті з виливом небезпечних хімічних речовин
  • Реферат: Правовые, нормативно-технические и организационные основы обеспечения безопасности жизнедеятельности общества

Радиация в ХХ в. представляет собой растущую угрозу для всего человечества. Радиоактивные вещества, перерабатываемые в ядерную энергию, попадающие в строительные материалы и, наконец, используемые в военных целях, оказывают вредное воздействие на здоровье людей. Поэтому защита от ионизирующих излучений (радиационная безопасность ) превращается в одну из важнейших задач по обеспечению безопасности жизнедеятельности человека.

Радиоактивные вещества (или радионуклиды) – это вещества, способные испускать ионизирующее излучение. Причиной его является нестабильность атомного ядра, в результате которой оно подвергается самопроизвольному распаду. Такой процесс самопроизвольных превращений ядер атомов неустойчивых элементов называют радиоактивным распадом, или радиоактивностью.

Ионизирующее излучение – излучение, которое создается при радиоактивном распаде и образует при взаимодействии со средой ионы различных знаков.

Акт распада сопровождается испусканием излучений в виде гамма-лучей, альфа-, бета-частиц и нейтронов.

Радиоактивные излучения характеризуются различной проникающей и ионизирующей (повреждающей) способностью. Альфа-частицы обладают столь малой проникающей способностью, что задерживаются листом обыкновенной бумаги. Их пробег в воздухе равен 2-9 см, в тканях живого организма - долям миллиметра. Иными словами, эти частицы при наружном воздействии на живой организм неспособны проникнуть через слой кожи. Вместе с тем ионизирующая способность таких частиц чрезвычайно велика, и опасность их воздействия возрастает при попадании внутрь организма с водой, пищей, вдыхаемым воздухом или через открытую рану, так как они могут повредить те органы и ткани, в которые проникли.

Бета-частицы обладают большей, чем альфа-частицы, проникающей, но меньшей ионизирующей способностью; их пробег в воздухе достигает 15 м, а в тканях организма - 1-2 см.

Гамма-излучение распространяется со скоростью света, обладает наибольшей глубиной проникновения, и ослабить его может только толстая свинцовая или бетонная стена. Проходя через материю, радиоактивное излучение вступает с ней в реакцию, теряя свою энергию. При этом чем выше энергия радиоактивного излучения, тем больше его повреждающая способность.

Величина энергии излучения, поглощенная телом либо веществом, называется поглощенной дозой . В качестве единицы измерения поглощенной дозы излучения в системе СИ принят Грей (Гр). На практике используется внесистемная единица - рад (1 рад = 0,01 Гр). Однако при равной поглощенной дозе альфа-частицы дают значительно больший повреждающий эффект, чем гамма-излучение. Поэтому для оценки повреждающего действия различных видов ионизирующего излучения на биологические объекты применяют специальную единицу измерения - бэр (биологический эквивалент рентгена). В системе СИ единицей этой эквивалентной дозы является зиверт (1 Зв = 100 бэр).

Для оценки радиационной обстановки на местности, в рабочем или жилом помещении, обусловленной воздействием рентгеновского или гамма-излучения, используют экспозиционную дозу облучения . За единицу экспозиционной дозы в системе СИ принят кулон на килограмм (Кл/кг). На практике она чаще всего измеряется в рентгенах (Р). Экспозиционная доза в рентгенах достаточно точно характеризует потенциальную опасность воздействия ионизирующих излучений при общем и равномерном облучении тела человека. Экспозиционной дозе в 1 Р соответствует поглощенная доза, примерно равная 0,95 рад.

При прочих одинаковых условиях доза ионизирующего излучения тем больше, чем длительнее облучение, т.е. доза накапливается со временем. Доза, соотнесенная с единицей времени, называется мощностью дозы, или уровнем радиации. Так, если уровень радиации на местности составляет 1 Р/ч, это означает, что за 1 час нахождения в данной местности человек получит дозу в 1 Р.

Рентген является весьма крупной единицей измерения, и уровни радиации обычно выражаются в долях рентгена - тысячных (миллирентген в час - мР/ч) и миллионных (микрорентген в час - мкР/ч).

Для обнаружения ионизирующих излучений, измерения их энергии и других свойств применяются дозиметрические приборы: радиометры идозиметры.

Радиометр - это прибор, предназначенный для определения количества радиоактивных веществ (радионуклидов) или потока излучений.

Дозиметр - прибор для измерения мощности экспозиционной или поглощенной дозы.

Человек в течение всей жизни подвергается воздействию ионизирующего излучения. Это прежде всего естественный радиационный фон Земли космического и земного происхождения. В среднем доза облучения от всех естественных источников ионизирующего облучения составляет в год около 200 мР, хотя эта величина в разных регионах Земли может колебаться в пределах 50-1000 мР/год и более.

Естественный радиационный фон – излучение, создаваемое космическим излучением, природными радионуклидами, естественно распределенными в земле, воде, воздухе, и другими элементами биосферы (например, пищевыми продуктами).

Кроме того, человек встречается с искусственными источниками излучения (техногенный радиационный фон) . К нему относится, например, ионизирующее излучение, используемое в медицинских целях. Определенный вклад в техногенный фон вносят предприятия ядерно-топливного цикла и ТЭЦ на угле, полеты самолетов на больших высотах, просмотр телепрограмм, пользование часами со светящимися циферблатами и т.д. В целом техногенный фон колеблется от 150 до 200 мбэр.

Техногенный радиационный фон – естественный радиационный фон, измененный в результате деятельности человека.

Таким образом, каждый житель Земли ежегодно в среднем получает дозу облучения в 250-400 мбэр. Это уже обычное состояние среды обитания человека. Неблагоприятного действия такого уровня радиации на здоровье человека не установлено.

Совершенно иная ситуация возникает при ядерных взрывах и авариях на атомных реакторах, когда образуются обширные зоны радиоактивного заражения (загрязнения) с высоким уровнем радиации.

Любой организм (растение, животное или человек) живет не изолированно, а так или иначе связан со всей живой и неживой природой. В этой цепочке путь радиоактивных веществ примерно следующий: растения усваивают их листьями непосредственно из атмосферы, корнями из почвы (почвенных вод), т.е. аккумулируют, и поэтому концентрация РВ в растениях выше, чем в окружающей среде. Все сельскохозяйственные животные получают РВ с пищей, водой, из атмосферы. Радиоактивные вещества, попадая в организм человека с пищей, водой, воздухом, включаются в молекулы костной ткани и мышц и, оставаясь в них, продолжают облучать организм изнутри. Поэтому безопасность человека в условиях радиоактивного загрязнения (заражения) окружающей среды достигается защитой от внешнего облучения, заражения радиоактивными осадками, а также защитой органов дыхания и желудочно-кишечного тракта от попадания РВ внутрь организма с пищей, водой ивоздухом. В общем, действия населения в районе заражения в основном сводятся к соблюдению соответствующих правил поведения и осуществлению санитарно-гигиенических мероприятий. При сообщении о радиационной опасности рекомендуется незамедлительно выполнить следующие из них:

1. Укрыться в жилых домах или служебных помещениях. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Заглубленные укрытия (подвалы) еще больше ослабляют дозу излучения: с деревянным покрытием - в 7 раз, с кирпичным или бетонным - в 40-100 раз.

2. Принять меры защиты от проникновения в квартиру (дом) радиоактивных веществ с воздухом: закрыть форточки, вентиляционные люки, отдушины, уплотнить рамы и дверные проемы.

3. Создать запас питьевой воды: набрать воду в закрытые емкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны.

4. Провести экстренную йодную профилактику (как можно раньше, но после специального оповещения!). Йодная профилактика заключается в приеме препаратов стабильного йода: таблеток йодистого калия или водно-спиртового раствора йода. Йодистый калий следует принимать после еды вместе с чаем или водой 1 раз в день в течение 7 суток по одной таблетке (0,125 г) на один прием. Водноспиртовой раствор йода нужно принимать после еды 3 раза в день в течение 7 суток по 3-5 капель на стакан воды.

Следует знать, что передозировка йода чревата целым рядом побочных явлений, таких, как аллергическое состояние и воспалительные изменения в носоглотке.

5. Начать готовиться к возможной эвакуации. Подготовить документы и деньги, предметы первой необходимости, упаковать лекарства, к которым вы часто обращаетесь, минимум белья и одежды (1-2 смены). Собрать запас имеющихся у вас консервированных продуктов на 2-3 суток. Все это следует упаковать в полиэтиленовые мешки и пакеты. Включите радиоточку для прослушивания информационных сообщений Комиссии по ЧС.

6. Постарайтесь соблюдать правила радиационной безопасности и личной гигиены, а именно:

Использовать в пищу только консервированные молоко и пищевые продукты, хранившиеся в закрытых помещениях и не подвергавшиеся радиоактивному загрязнению. Не пить молоко от коров, которые продолжают пастись на загрязненных полях: радиоактивные вещества уже начали циркулировать по так называемым биологическим цепочкам;

Не есть овощи, которые росли в открытом грунте и сорваны после начала поступления радиоактивных веществ в окружающую среду;

Принимать пищу только в закрытых помещениях, тщательно мыть руки с мылом перед едой и полоскать рот 0,5-процентным раствором питьевой соды;

Не пить воду из открытых источников и водопровода после официального объявления о радиационной опасности; накрыть колодцы пленкой или крышками;

Избегать длительных передвижений по загрязненной территории, особенно по пыльной дороге или траве, не ходить в лес, воздержаться от купания в ближайшем водоеме;

Переобуваться, входя в помещение с улицы (“грязную” обувь следует оставлять на лестничной площадке или на крыльце);

7. В случае передвижения по открытой местности необходимо использовать подручные средства защиты:

Органов дыхания - прикрыть рот и нос смоченными водой марлевой повязкой, носовым платком, полотенцем или любой частью одежды;

Кожи и волосяного покрова - прикрыться любыми предметами одежды - головными уборами, косынками, накидками, перчатками. Если вам крайне необходимо выйти на улицу, рекомендуем надеть резиновые сапоги.

Ниже приводятся меры предосторожности в условиях повышенной радиации, рекомендованные известным американским врачом Гейлом - специалистом по радиационной безопасности.

НЕОБХОДИМО:

1. Хорошее питание.

2. Ежедневный стул.

3. Отвары семян льна, чернослива, крапивы, слабительных трав.

4. Обильное питье, чаще потеть.

5. Соки с красительными пигментами (виноградный, томатный).

6. Черноплодная рябина, гранаты, изюм.

7. Витамины Р, С, В, сок свеклы, моркови, красное вино (3 ст. ложки ежедневно).

8. Редька тертая (утром натереть, вечером съесть и наоборот).

9. 4-5 грецких орехов ежедневно.

10. Хрен, чеснок.

11. Крупа гречневая, овсяная.

12. Хлебный квас.

13. Аскорбиновая кислота с глюкозой (3 раза в день).

14. Активированный уголь (1-2 шт. перед едой).

15. Витамин А (не более двух недель).

16. Квадемит (по 3 раза в день).

Из молочных продуктов лучше всего употреблять в пищу творог, сливки, сметану, масло. Овощи и фрукты очищать до 0,5 см, с кочанов капусты снимать не менее трех листов. Лук и чеснок обладают повышенной способностью к поглощению радиоактивных элементов. Из мясных продуктов преимущественно есть свинину и птицу. Мясные бульоны исключить. Мясо готовить таким образом: первый отвар слить, вновь залить его водой и варить до готовности.

ПРОДУКТЫ С АНТИРАДИОАКТИВНЫМ ДЕЙСТВИЕМ:

1. Морковь.

2. Растительное масло.

3. Творог.

4. Таблетки кальция.

НЕЛЬЗЯ УПОТРЕБЛЯТЬ В ПИЩУ:

2. Холодец, кости, костный жир.

3. Вишни, абрикосы, сливы.

4. Говядину: она более всего может быть заражена.

Цели: сформировать понятия о радиации, радиоактивности, радиоактивном распаде; изучить виды радиоактивного излучения; рассмотреть источники радиоактивного излучения.

Методы проведения: рассказ, беседа, объяснение.

Место проведения: школьный класс.

Время проведения: 45 мин.

План:

1.Вводная часть:

  • орг. момент;
  • опрос

2.Основная часть:

  • изучение нового материала

3.Заключение:

  • повторение;

Термин «радиация» происходит от латинского слова radius и означает луч. В самом широком смысле слова радиация охватывает все существующие в природе виды излучений - радиоволны, инфракрасное излучение, видимый свет, ультрафиолет и, наконец, ионизирующее излучение. Все эти виды излучения, имея электромагнитную природу, различаются длиной волны, частотой и энергией.

Существуют также излучения, которые имеют другую природу и представляют собой потоки различных частиц, например, альфа-частиц, бета-частиц, нейтронов и т.д.

Каждый раз, когда на пути излучения возникает барьер, оно передает часть или всю свою энергию этому барьеру. И от того, насколько много энергии было передано и поглощено в организме, зависит конечный эффект облучения. Всем известны удовольствие от бронзового загара и огорчение от тяжелейших солнечных ожогов. Очевидно, что переоблучение любым видом радиации чревато неприятными последствиями.

Для здоровья человека наиболее важны ионизирующие виды излучения. Проходя через ткань, ионизирующее излучение переносит энергию и ионизирует атомы в молекулах, которые играют важную биологическую роль. Поэтому облучение любыми видами ионизирующего излучения может так или иначе влиять на здоровье. К их числу относятся:

Альфа-излучение - это тяжелые положительно заряженные частицы, состоящие из двух протонов и двух нейтронов, крепко связанных между собой. В природе альфа-частицы возникают в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или вдыхаемым воздухом, оно облучает внутренние органы и становится потенциально опасным.

Бета-излучение - это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение - это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Рентгеновское излучение аналогично гамма-излучению, испускаемому ядрами, но оно получается искусственно в рентгеновской трубке, которая сама по себе не радиоактивна. Поскольку рентгеновская трубка питается электричеством, то испускание рентгеновских лучей может быть включено или выключено с помощью выключателя.

Нейтронное излучение образуется в процессе деления атомного ядра и обладает высокой проникающей способностью. Нейтроны можно остановить толстым бетонным, водяным или парафиновым барьером. К счастью, в мирной жизни нигде, кроме как непосредственно вблизи ядерных реакторов, нейтронное излучение практически не существует.

В отношении рентгеновского и гамма-излучения часто употребляют определения «жёсткое» и «мягкое» . Это относительная характеристика его энергии и связанной с ней проникающей способности излучения («жёсткое» - большие энергия и проникающая способность, «мягкое» - меньшие).

Ионизирующие излучения и их проникающая способность

Радиоактивность

Число нейтронов в ядре определяет, является ли данное ядро радиоактивным. Чтобы ядро находилось в стабильном состоянии, число нейтронов, как правило, должно быть несколько выше числа протонов. В стабильном ядре протоны и нейтроны так крепко связаны между собой ядерными силами, что ни одна частица не может выйти из него. Такое ядро всегда будет оставаться в уравновешенном и спокойном состоянии. Однако ситуация совсем иная, если число нейтронов нарушает равновесие. В этом случае ядро обладает избыточной энергией и просто не может удерживаться в целости. Рано или поздно оно выбросит свою избыточную энергию.

Различные ядра высвобождают свою энергию разными способами: в форме электромагнитных волн или потоков частиц. Такая энергия называется излучением.

Радиоактивный распад

Процесс, в ходе которого нестабильные атомы испускают свою избыточную энергию, называется радиоактивным распадом , а сами такие атомы - радионуклидом . Легкие ядра с небольшим числом протонов и нейтронов становятся стабильными после одного распада. При распаде тяжелых ядер, например, урана, образующееся в результате этого ядро по-прежнему является нестабильным и, в свою очередь, распадается дальше, образуя новое ядро, и т.д. Цепочка ядерных превращений заканчивается образованием стабильного ядра. Такие цепочки могут образовывать радиоактивные семейства. В природе известны радиоактивные семейства урана и тория.

Представление об интенсивности распада дает понятие периода полураспада - периода, в течение которого произойдет распад половины нестабильных ядер радиоактивного вещества. Период полураспада каждого радионуклида уникален и неизменен. Один радионуклид, например, криптон-94, рождается в ядерном реакторе и очень быстро распадается. Период полураспада его меньше секунды. Другой, например, калий-40, образовался в момент рождения Вселенной и до сих пор сохранился на планете. Период полураспада его измеряется миллиардами лет.

Источники излучения.

В повседневной жизни человек подвергается воздействию различных источников ионизирующего излучения как естественного, так и искусственного (техногенного) происхождения. Все источники можно разделить на четыре группы:

  • естественный радиационный фон;
  • техногенный фон от естественных радионуклидов;
  • медицинское облучение за счет рентгено- и радиоизотопной диагностики;
  • глобальные выпадения продуктов испытательных ядерных взрывов

К этим источникам следует добавить и облучение, обусловленное работой предприятий атомной энергетики и промышленности и радиоактивным загрязнением окружающей среды в результате радиационных аварий и инцидентов, хотя эти источники носят ограниченный локальный характер.

Естественный радиационный фон формируется космическим излучением и естественными радионуклидами, находящимися в горных породах, почве, продуктах питания и организме человека.

Под техногенным облучением обычно понимается облучение, обусловленное естественными радионуклидами, которые концентрируются в продуктах человеческой деятельности, например, строительных материалах, минеральных удобрениях, выбросах тепловых электростанций и др., т.е. техногенно измененный естественный фон.

Медицинские источники ионизирующего излучения являются одним из наиболее значимых факторов облучения человека. Это связано, прежде всего, с тем, что диагностические и профилактические рентгенологические процедуры носят массовый характер. Кроме того, уровни облучения зависят от структуры процедур и качества аппаратуры. Остальные источники техногенного облучения - тепловые электростанции, АЭС, минеральные удобрении, потребительские товары и др. в сумме формируют дозу облучения населения в несколько мкЗв в год (см. приложение №6).

Литература:

1.Ландау-Тылкина С.П. Радиация и жизнь. М. Атомиздат, 1974 г.

2. Тутошина Л.М. Петрова И.Д. Радиация и человек. М. Знание, 1987 г.

3. Белоусова И.М. Естественная радиоактивность.М. Медгиз, 1960 г.

4. Петров Н.Н. «Человек в чрезвычайных ситуациях». Учебное пособие — Челябинск: Южно-Уральское книжное изд-во, 1995 г.

Источник света делится на:

    Лампы накаливания (Лодыгин)

    Газоразрядные лампы (Яблочков)

    Полупроводниковые источники света (светодиоды) (Алферов)

    Неэлектрические источники

    1. Химический источник

      Фотолюминесцентный

      Радиолюминесцентные (фосфор 31)

Характеристики источников света:

    Номинальное напряжение (обычно 220 или 127)

    Мощность лампы

    Номинальный световой поток [Ф ном ]

Цветовое оформление производственного интерьера. Работоспособность в определенной степени зависит от цветового оформления.

Красный цвет – возбуждает

Оранжевый – бодрит

Желтый – веселит

Зеленый – успокаивает

Синий – регулирует дыхание

Черный – резко снижает настроение

Белый - вызывает апатию

Шум и вибрация

    Влияние шума на деятельность человека.

Шум – любой нежелательный звук, оказывающий вредное воздействие на организм человека.

Поражение шумом:

    Снижает внимание

    Ухудшает реакцию

    Угнетает нервную систему

    Способствует нарушению обмена веществ

Шумовая болезнь – профессиональное заболевание (перестают действовать некоторые органы из-за шума).

Звуковые колебания делятся на:

    Инфразвук (менее 20 Гц)

    Слышимый (от 20 Гц до 20 кГц)

    Ультразвуковой диапазон

Низкочастотный (от 20 до 400 Гц)

Средняя частота (от 400 до 1000)

Высокочастотный (от 1000 до 4000)

Интенсивность - отношение мощности к площади переносимой энергии. [Вт/м 2 ]

Давление звуковой волны (измеряется в паскалях).

Прирост силы ощущения

Измеряется в Бэлах

Нормирование шума

Нормируется по:

    Предельному спектру (постоянные шумы)

    По эквивалентному уровню шума (непостоянные шумы)

До 35 дБ – не беспокоит человека

От 40 до 70 вызывает неврозы

Свыше 70 дБ ведет к тугоухости

до 140 вызывает боль

свыше 140 смерть

    Защита от шума

    Снижение звуковой мощности источника шума

    Изменение направленности шума

    Рациональная планировка производственных участков

    Наиболее рациональным способом уменьшения шума является снижение звуковой мощности его источника. Снижение механических шумов достигается: улучшением конструкции механизмов; заменой металлических деталей на пластмассовые; заменой ударных технологических процессов на безударные.

Эффективность этих мероприятий по снижению уровня шума дает эффект до 15 дБ.

    Следующим способом снижения шума является изменение направленности его излучения.

Этот способ применяется в том случае, когда работающее устройство направленно излучает шум. Примером такого устройства может служить труба для сброса в атмосферу сжатого воздуха в сторону, противоположную рабочему месту.

    Рациональная планировка предприятий и цехов. Если на территории предприятия имеется несколько шумных цехов, то их целесообразно сосредоточить в одном - двух местах, максимально удаленных от остальных цехов и жилых районов.

    Следующий способ борьбы с шумом связан с уменьшением звуковой мощности по пути распространения шума (звукоизоляция). Практически это достигается использованием звукоизолирующих ограждений и кожухов, звукоизолирующих кабин и пультов управления, звукоизолирующих и акустических экранов.

В качестве материалов для звукоизолирующих ограждений рекомендуется использовать бетон, железобетон, кирпич, керамические блоки, деревянные полотна, стекло.

Звукоизолирующими кожухами обычно полностью закрывают издающее шум устройство. Кожухи изготавливают из листового металла (сталь, дюралюминий) или пластмассы. Как и в случае звукоизолирующих ограждений, кожухи более эффективно снижают уровень шума на высоких частотах, чем на низких.

5. Звукопоглощение. В производственных помещениях уровень звука существенно повышается из-за отражения шума от строительных конструкций и оборудования. Для снижения уровня отраженного звука применяют специальную акустическую обработку помещения с использованием средств звукопоглощения, к которым относятся звукопоглощающие облицовки и штучные звукопоглотители. Они поглощают звук. При этом колебательная энергия звуковой волны переходит в тепловую вследствие потерь на трение в звукопоглотителе.

Для звукопоглощения используют пористые материалы (т.е. материалы, обладающие не сплошной структурой), так как потери на трение в них более значительны. И наоборот, звукоизолирующие конструкции, отражающие шум, изготавливают из массивных, твердых и плотных материалов.

Средства индивидуальной защиты

    Бируши (снижают до 20 дБ)

    Вкладыши (до 40 дБ)

    Шлемы (до 60-70 дБ)

    Вибрация. Влияние вибрации на жизнедеятельность

Вибрация – это механические колебания твердого тела вокруг положения равновесия.

С физической точки зрения вибрация – это колебательный процесс, в результате которого тело через определенные промежутки проходит одно и то же устойчивое положение.

Частотные характеристики вибрации:

    Частотный диапазон для общих вибраций (F=0,8*80 Гц)

    Средние геометрические частоты (1, 2, 4, 8, 16, 32, 63 Гц)

    Частотный диапазон для локальных вибраций (от 5 до 1400 Гц)

    СГЧ (8, 16, 32, 63, 125, 250, 500, 1000)

Абсолютные параметры вибрации

    Амплитуда [А] [У] измеряется в метрах

    Виброскорость [V] м/с

    Виброускорение [a] м/с 2

Относительные параметры вибрации

    Уровень виброскорости

α v =20Lg(V/V 0) [дБ]

V 0 =5*10 -8 м/с Пороговое значение

    Уровень виброускорения

α a =20Lg(a/a 0) дБ

Вибрацию делят на два вида :

    Локальная вибрация (действует на отдельные части тела)

    Общая вибрация (действует на весь организм через опорные поверхности (пол, сидение)).

Вибрация очень опасна для организма. При совпадении внешних вибраций и колебаний организма наступает резонанс (6-9 Гц).

Вибрационная болезнь (не лечится):

1 стадия: изменение кожных чувств; боль и слабость в костях; изменения в сосудах

2 стадия: нарушение кожной чувствительности; спазмы пальцев

3 стадия:атрофия плечевого пояса; изменение ЦНС (центральная нервная система) и ССС (сердечно-сосудистая система)

Источники вибрации

В соответствии с ССБТ (гост 12) источники вибрации делятся на:

    1. Транспортные источники (авто, ж/д и водный)

      Транспортно-технологические (краны, экскаваторы)

      Технологические (станки, компрессоры и насосы)

  1. Локальные

    1. Ручные машинки

      Ручной инструмент

Нормирование вибрации

Вибрация нормируется в соответствии с санитарными нормами (производственная вибрация, вибрация жилых и общественных помещений).

Вибрация нормируется по двум показателям:

    Вибрация локальная

    Вибрация общая

И та, и другая вибрация нормируется по уровню скорости в дБ.

Очень часто нормируют одновременно и шум и вибрацию.

Шум нормируют:

    По эквивалентному уровню звука

    По звуковому давлению инфразвука

    По звуковому давлению ультразвука воздушного

    По уровню виброскорости ультразвука.

4) Защита от вибрации

    Снижение вибрации в источнике

    1. Вибропоглащение (вибродемпфер) Механическая энергия превращается в тепловую энергию

      Виброгашение (массив, фундамент)

    Уменьшение вибрации по пути ее распространения

    1. Виброизоляция (помещения изоляторы)

    Средства индивидуальной защиты

Основные средства индивидуальной защиты – это виброзащитная обувь и виброзащитные перчатки

    Соблюдение режима труда и отдыха

Степень воздействия вибрации на человека зависит от времени непрерывной работы вибро инструмента. Медики установили, что через каждые 30 минут делать перерывы на 10-15 минут, то виброболезни можно избежать.

Электромагнитное излучение (ЭМИ)

    Воздействие ЭМИ на человека.

Неионизирующие электромагнитные излучения включают:

    Ультрафиолетовое излучение

    Видимый свет

    Инфракрасное излучение

    Радио волны

К ионизирующим видам относятся рентгеновские и гамма излучения.

С точки зрения безопасности жизнедеятельности не ионизирующие электромагнитные излучения делятся на три группы:

    ЭМП (электромагнитные излучения) радиочастот

    ЭМП (электромагнитное излучения промышленной частоты)

    Постоянные магнитные поля

Электромагнитные излучения радиочастот

Основные параметры электромагнитных излучений :

Источники электромагнитных излучений :

    Радиотехнические объекты

    Радиостанции и базовые станции сотовой связи

    Термические цеха

    Бытовые источники

    1. Микроволновые печи

      Мобильные и радиотелефоны

      Компьютеры

Зоны воздействия электромагнитных полей (часто на экзамене)

(воздействие характеризуется только плотностью потока энергии [I])

Воздействия на человека электромагнитных излучений связано с тепловым эффектом. Электромагнитное излучение (ЭМИ) – передает определенное количество энергии телу человека, эта энергия преобразуется в тепловую до определенного предела организм отводит это тепло, когда он перестает справляться с отводом тепла человек заболевает.

Органы, которые более подвержены ЭМИ: глаза; мозг желудок печень

Симптомы: утомляемость и изменения в крови, потом возникают опухоли и аллергии.

    Нормирования электромагнитной среды

СанНПиН 2.2.4. 191-03 - электромагнитные поля в производственных условиях

    ВДУ магнитного поля земли

    Предельно допустимые уровни магнитных полей

    Предельно допустимые уровни электростатических полей

    Предельно допустимые уровни электрических и магнитных полей промышленной частоты

    Предельно допустимые уровни электромагнитных полей (по диапазонам)

Плотность потока энергии – в СНГ

В США характеристика – удельная мощность поглощение

    Электромагнитная безопасность

Осуществляется следующими методами:

    Защита временем

    Защита расстоянием

    Защита рациональным возмещением источника ионизирующих излучений

    Уменьшение мощности источников ионизирующих излучений

    Экранирование

    1. Отражающие (токи Фуко гасят эти волны)

      Поглощающие

    Применение индивидуальных средств защиты (халаты с металлической основой)

    Правила пользования сотовым телефоном

Плотность потока энергии мобильного телефона в области мозга составляет (16 Вт/м 2 облучение в минуту, а допустимая норма 10 Вт/м 2)

    Наибольшая мощность возникает в момент вызова

    Расстояние до уха (сильно не прислонять)

    Переносить из руки в руку (т.е. от одного уха к другому)

    Использование наушников (гарнитуры)

    Вредные факторы, возникающие при работе с компьютером

    Рабочая поза и освещенность

    Тепло (инфракрасное излучение)

    Шум и вибрация

    Статическое электричество

    Электромагнитные поля

Меры безопасности :

    Соблюдение эргономики рабочего места (удобное расположение и освещенность)

    Микроклимат (температура не должна превышать 35 градусов; влажность 65%, воздух от 0,1 до 02 м/с)

    Объем помещения (на каждого пользователя не менее 20 м 2)

    Объем воздуха (не менее 20 м 3 /час)

    Расстояние до дисплея (не менее 60 см)

    Время отдыха (10 минут в час)

Радиационная безопасность

    Виды ионизирующих излучений

Под радиацией понимается ионизирующее излучение.

Ионизирующее излучение – это излучение взаимодействие которого со средой приводит к образованию ионов.

Ионизирующее излучение делится на:

    Характеристика источников ионизирующего излучения. (Активность)

Источник ионизирующего излучения – это вещества и установки, при использовании которых возникает ионизирующее излучение.

Характеристикой источников ионизирующего излучения является активность [А].

Активность – количество единиц образованное источником излучения в единицу времени. (Измеряется в Бк – беккерель и Кюри).

1 Бк – активность источника в котором в 1 секунду происходит 1 распад.

1 Кюри – активность источника в котором в 1секунду происходит 37 миллиардов распадов.

Удельная активность – это активность 1 килограмма (единицы массы) источника, т.е. отношение активности к массе. (Бк/кг).

Объемная активность – отношение активности к объему источника. (Бк/м 3)

Поверхностная активность – отношение активности источника к его площади. (Бк/м 2)

Закон радиоактивного распада определяет изменение активности во времени. A t = A 0 e - λt

Закон Вигнера Вея – при взрывах и авариях активность источника меняется по показательному закону. A t = A 0 (t/t 0) - n

    Характеристика взаимодействия ионизирующих излучений со средой. (Дозовые характеристики)

Для характеристики воздействия ионизирующего излучения используется понятие «доза измерения ».

В зависимости от поставленной задачи используют различные дозы. Если надо определить количество электричества созданного ионизирующим излучением, то используют экспозиционную дозу.

Экспозиционная доза - это количество электричества созданное ионизирующим излучением в единице массы вещества. Доза измеряется в рентгенах. [рентген]

Поглощенная доза – количество энергии поглощенное единицы массы вещества при прохождении через него излучения.

Эквивалентная доза – доза эквивалентная гамма излучению. . В системе СИ эквивалентная доза измеряется в зивертах, а внесистемная единица бэр.

Эффективная доза .

При равномерном облучении эффективная доза равна эквивалентной дозе . При облучении всего человека пользуются эффективной дозой.

Доза является интегральным показателем. В качестве дифференциального показателя используют мощность дозы. Мощность дозы характеризует поле ионизирующего излучения. Было определено, что мощность дозы прямо пропорциональна активности и обратно пропорциональна квадрату сопротивлению.

Любой экран ослабляет ионизирующее излучение по экспоненциальному закону.

    Облучение человека в повседневных условиях

ОПУ складывается из бытового и фонового излучения.

Фоновое облучение складывается из естественного радиоактивного фона (фон Земли и космоса) и техногенно-измененное радиоактивное поле (фон от ядерных взрывов и ядерной энергетики).

Бытовое облучение складывается из медицинского облучения и облучения электронной аппаратурой.

ЕРФ – фон Земли и космоса.

ТИРФ – фон от ядерных взрывов и энергетики

Каждый человек в среднем получает 3 мЗв/год.

    Требования к ограничению облучения

    Федеральный закон №3 о радиационной безопасности населения

    Норма радиационной безопасности НОРБ 99/2009

    Основные своды правил о радиационной безопасности 99 (ОСПоРБ-99)

Персонал группы А (20 мЗв/год)

Персонал группы Б (5 мЗв/год)

Все население (1 мЗв/год)

Строительные материалы – гранит, радон, радиационные приборы.

Раздел 3 (техника БЖД)

Электробезопасность

    Технические средства обеспечения электро безопасности

    Средства обеспечения электро безопасности.

Электробезопасность – это система организационных и технических мероприятий и средств, обеспечивающих защиту от вредных и опасных факторов: (часто спрашивают на экзамене)

    Электрический ток

    Электрическая дуга

    Электромагнитных излучений

    Статического электричества

    Воздействие электрического тока на человека

От воздействия тока возникают травмы, которые называются электро травмы.

Электро травмы могут быть:

    Местными (т.е. поражать в месте прикосновения к току) обычно бывают при высоких частотах.

    1. Электрические ожоги

      Электрические знаки

      Металлизация кожи

    Общие (поражается все тело).

    1. Электрический удар (делится на 5 степеней)

1 степень (возникновение судороги)

2 степень (возникновение и судороги и боли)

3 степень (судорога и потеря сознания)

4 степень (потеря сознания + или прекращение дыхание или прекращение биения сердца)

5 степень (клиническая смерть) прекращение дыхания, биения сердца.

      Электрический шок

    Факторы определяющие исход поражения электрическим током

Закон Ома – ток через человека пропорционален напряжению и обратно пропорционален сопротивлению.

Факторы поражения тока.

1 фактор . Сила тока I (для 50 Гц)

Существует три критерия:

    Ток пороговой ощутимости (примерно 1 мА).

    Пороговые не отпускающий (примерно 10 мА)

    Пороговый фибриляционный (смертельный) примерно 100 мА.

2 фактор . Напряжение прикосновения. Допустимым считается напряжение 20 В.

Напряжение прикосновения – это напряжение между двумя точками электрической сети, к которой дотронулся человек.

3 фактор . Сопротивление тела человека.

При нормальном режиме эксплуатации электроустановок сопротивление тела человека принимает 6,7 кОм. При аварийном состоянии оборудование снижается сопротивление до 1 кОм. Если температура выше 35 градусов и влажность выше 75% сопротивление уменьшается еще в 3 раза.

4 фактор . Длительность воздействия электрического тока на человека.

Кардиоцикл человека определяет дополнительное время воздействия электрического тока. (t=0,2 – 1 сек)

5 фактор . Путь тока через тело человека.

Наиболее опасные пути тока через человека рука – рука, рука – ноги (т.к. проходят через тело человека).

6 фактор Род тока.

Самый опасный переменный. Менее опасный постоянный и выпрямленный.

7 фактор Частота тока.

Самый опасный ток с частотой от 20 до 100 Гц. Чем выше частота тока, тем меньше вероятность электрического удары и выше вероятность электрического ожога.

8 фактор . Контакт в точках акупунктуры.

9 фактор . Внимание. Электрический ток находится в крови человека. Чем больше внимательность, тем больше ток. Он смягчает последствия.

10 фактор . Индивидуальные свойства человека.

11 фактор . Схема включения.

Наиболее опасно двухфазное прикосновение (скорее всего смерть).

Однофазное прикосновение в сети с изолированной нейтралью. (менее опасно, чем предыдущее)

Однофазное прикосновение в сетях с заземленной нейтралью (опасно). Особо когда человек с босой ногой.

12 фактор . Условия внешней среды.

По условиям внешней среды все помещения делят на 4 класса:

    Помещение без повышенной опасности

    Помещение с повышенной опасностью

    Помещения особо опасные

    Помещения с особо неблагоприятными условиями.

Опасность определяется: температурой (35 градусов предел), влажностью (75% предел), электропроводностью полов, наличие пыли в воздухе, наличие заземленного оборудования.

    Классификация электрических сетей

Все электрические сети можно разделить на 2 большие группы:

    Сети с напряжением до 1000 В

    Сети с напряжением свыше 1000 В

Кроме этого электрические сети делят в зависимости от заземления нейтрали:

    С заземленной нейтралью

    С изолированной нейтралью

В зависимости от количества проводов:

    Трехпроводные

    Четырехпроводные

    Пяти проводные

Наиболее распространены четырехпроводные сети с заземленной нейтралью. Эти сети называются TNC.

1 буква Т терра (показывает, что электрические проводники заземлены)

2 буква N. Показывает, что электроустановка замыкается на нейтральный провод.

3 буква С. Показывает, что нулевой защитный и нулевой заземленный входит в один провод.

В настоящее время наиболее широко стали применяться пяти проводные сети. В этих сетях нулевой провод рабочий и нулевой провод защитный разъединены. Обозначаются TN-S.

Для переносного электрооборудования используется трехпроводная сеть с изолированной нейтралью Обозначается IT. Схема эффективна, если она на небольшой протяженности, хорошо обслуживается, находится в сухом помещение.

    Технические способы обеспечения электробезопасности

Электробезопасность включает в себя следующие элементы:

    Технические способы обеспечения безопасности

    1. Электрическая изоляция (не менее 500 кОм)

      Зануление

      Заземление

      Защитное отключение

      Электрическое разделение сетей

      Применение малых напряжений

      Ограждение токоведущих частей

      Применение средств сигнализаций, блокировки, а также знаков безопасности и плакатов.

    Индивидуальные средства защиты

    Организационные мероприятия

    Нормативно-правовые акты

Зануление (Принципиальная схема зануления)

Зануление – это присоединение корпуса к заземленному нулевому проводу.

Принцип действия : превращение замыкания на корпус в короткое замыкание.

Область применения : Трехфазные четырехпроводные сети с глухо заземленной нейтралью

Защитное заземление

Защитное заземление – преднамеренное соединение корпуса с землей.

Принцип действия : снижение до безопасного значения тока через человека.

Область применения : трехфазные трехпроводные сети с изолированной нейтралью (для сетей до 1000 В).

    Электрозащитные средства (называют средства индивидуальной защиты СИЗ)

    Средства изолирующие

    1. Основные. Позволяют работать под напряжением. (Диэлектрические перчатки, изолирующие клещи и указатели напряжения)

      Дополнительные. (диэлектрические калоши, изолирующие подставки, коврики)

    Средства ограждающие

    1. Переносные средства, включающие в себя временные переносные ограждения и изолирующие накладки.

    Средства экранирующие

    1. Переносные экранирующие средства

    Средства предохранительные

Это средства, которые защищают от поражающих факторов не электрической природы, возникающие при работе с электро оборудованием. (очки, щитки, предохранительные пояса, противогазы, невоспламеняющиеся рукавицы).

    Организационные основы электробезопасности

Выше, мы рассмотрели технические основы безопасности, но как показывает анализ несчастных случаев, много людей гибнет из-за плохой организации электробезопасности.

К основным организационным мероприятиям отнесем:

    Оформление работ на электроустановках должно проводиться: по нарядам или распоряжению. Если работы проводятся больше 1 часа или в них участвуют больше трех человек, то должен быть выписан наряд на эти работы. Если работа меньше часа и менее трех человек, то распоряжение.

    Люди, которые проводят электрические работы, обязаны иметь допуск к работе. Для этого им присваивается классификация. Их всего 5 групп.

    Надзор за проведение работ

    Соблюдение режима

    1. труда и отдыха

      Перехода на другие работы

      Окончание работ

    Оказание первой помощи при поражении током

Первая помощь должна оказаться в течении 1 минуты .

Необходимо : установить наличие дыхания, пульса, шока; организовать вызов скорой помощи; проводить реанимационные мероприятия: восстановить дыхание, непрямой массаж сердца.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Источники электромагнитных излучений

Известно, что около проводника, по которому протекает ток, возникают одновременно электрическое и магнитное поля. Если ток не меняется во времени, эти поля не зависят друг от друга. При переменном токе магнитное и электрическое поля связаны между собой, представляя единое электромагнитное поле.

Электромагнитное поле обладает определённой энергией и характеризуется электрической и магнитной напряжённостью, что необходимо учитывать при оценке условий труда.

Источниками электромагнитных излучений служат радиотехнические и электронные устройства, индукторы, конденсаторы термических установок, трансформаторы, антенны, фланцевые соединения волноводных трактов, генераторы сверхвысоких частот и др.

Современные геодезические, астрономические, гравиметрические, аэрофотосъёмочные, морские геодезические, инженерно-геодезические, геофизические работы выполняются с использованием приборов, работающих в диапазоне электромагнитных волн, ультравысокой и сверхвысокой частот, подвергая работающих опасности с интенсивностью облучения до 10 мкВт/см2.

Биологическое действие электромагнитных излучений

Электромагнитные поля человек не видит и не чувствует и именно поэтому не всегда предостерегается от опасного воздействия этих полей. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определённой интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом.

Нагрев особенно опасен для органов со слаборазвитой сосудистой системой с неинтенсивным кровообращением (глаза, мозг, желудок и др.). При облучении глаз в течение нескольких дней возможно помутнение хрусталика, что может вызвать катаракту.

Кроме теплового воздействия электромагнитные излучения оказывают неблагоприятное влияние на нервную систему, вызывают нарушение функций сердечно-сосудистой системы, обмена веществ.

Длительное воздействие электромагнитного поля на человека вызывает повышенную утомляемость, приводит к снижению качества выполнения рабочих операций, сильным болям в области сердца, изменению кровяного давления и пульса.

Оценка опасности воздействия электромагнитного поля на человека производится по величине электромагнитной энергии, поглощённой телом человека.

3.2.1.2 Электрические поля токов промышленной частоты

Установлено, что негативное воздействие на организм работающих оказывают и электромагнитные поля токов промышленной частоты (характеризуются частотой колебаний от 3 до 300 Гц). Неблагоприятные воздействия токов промышленной частоты проявляются только при напряжённости магнитного поля порядка 160-200 А/м. Зачастую магнитная напряжённость поля не превышает 20-25 А/м, поэтому оценку опасности воздействия электромагнитного поля достаточно производить по величине электрической напряжённости поля.

Для измерения напряжённости электрического и магнитного полей используют приборы типа "ИЭМП-2". Плотность потока излучения измеряют различного рода радар-тестерами и термисторными измерителями малой мощности, например, "45-М", "ВИМ" и др.

Защита от электрических полей

В соответствии со стандартом "ГОСТ 12.1.002-84 ССБТ. Электрические поля промышленной частоты. Допустимые уровни напряжённости и требования к проведению контроля на рабочих местах." нормы допустимых уровней напряжённости электрических полей зависят от времени пребывания человека в опасной зоне. Присутствие персонала на рабочем месте в течение 8 часов допускается при напряжённости электрического поля (Е), не превышающей 5 кВ/м. При значениях напряжённости электрического поля 5-20 кВ/м время допустимого пребывания в рабочей зоне в часах составляет:

Т=50/Е-2. (3.1)

Работа в условиях облучения электрическим полем с напряжённостью 20-25 кВ/м должна продолжаться не более 10 минут.

В рабочей зоне, характеризуемой различными значениями напряжённости электрического поля, пребывание персонала ограничивается временем (в часах):

где и ТЕ - соответственно фактическое и допустимое время пребывания персонала (ч), в контролируемых зонах с напряжённостями Е1, Е2, ..., Еn.

Основными видами средств коллективной защиты от воздействия электрического поля токов промышленной частоты являются экранирующие устройства. Экранирование может быть общим и раздельным. При общем экранировании высокочастотную установку закрывают металлическим кожухом - колпаком. Управление установкой осуществляется через окна в стенках кожуха. В целях безопасности кожух контактируют с заземлением установки. Второй вид общего экранирования - изоляция высокочастотной установки в отдельное помещение с дистанционным управлением.

Конструктивно экранирующие устройства могут быть выполнены в виде козырьков, навесов или перегородок из металлических канатов, прутьев, сеток. Переносные экраны могут быть оформлены в виде съёмных козырьков, палаток, щитов и др. Экраны изготовляют из листового металла толщиной не менее 0,5 мм.

Наряду со стационарными и переносными экранирующими устройствами применяют индивидуальные экранирующие комплекты. Они предназначены для защиты от воздействия электрического поля, напряжённость которого не превышает 60 кВ/м. В состав индивидуальных экранирующих комплектов входят: спецодежда, спецобувь, средства защиты головы, а также рук и лица. Составные элементы комплектов снабжены контактными выводами, соединение которых позволяет обеспечить единую электрическую сеть и осуществить качественное заземление (чаще через обувь).

Периодически проводится проверка технического состояния экранирующих комплектов. Результаты проверки регистрируются в специальном журнале.

Полевые топографо-геодезические работы могут проводиться вблизи линий электропередачи. Электромагнитные поля воздушных линий электропередачи высокого и сверхвысокого напряжений характеризуются напряжённостью магнитной и электрической, составляющих соответственно до 25 А/м и 15 кВ/м (иногда на высоте 1,5-2,0 м от земли). Поэтому в целях уменьшения негативного воздействия на здоровье, при производстве полевых работ вблизи линий электропередачи напряжением 400 кВ и выше, необходимо либо ограничивать время пребывания в опасной зоне, либо применять индивидуальные средства защиты.

3.2.1.3 Электромагнитные поля радиочастот

Источники электромагнитных полей радиочастот

Источниками возникновения электромагнитных полей радиочастот являются: радиовещание, телевидение, радиолокация, радиоуправление, закалка и плавка металлов, сварка неметаллов, электроразведка в геологии (радиоволновое просвечивание, методы индукции и др.), радиосвязь и др.

Электромагнитная энергия низкой частоты 1-12 кГц широко используется в промышленности для индукционного нагрева с целью закалки, плавки, нагрева металла.

Энергия импульсивного электромагнитного поля низких частот применяется для штамповки, прессовки, для соединения различных материалов, литья и др.

При диэлектрическом нагреве (сушка влажных материалов, склейка древесины, нагрев, термофиксация, плавка пластмасс) используются установки в диапазоне частот от 3 до 150 МГц.

Ультравысокие частоты используются в радиосвязи, медицине, радиовещании, телевидении и др. Работы с источниками сверхвысокой частоты осуществляются в радиолокации, радионавигации, радиоастрономии и др.

Биологическое действие электромагнитных полей радиочастот

По субъективным ощущениям и объективным реакциям организма человека не наблюдается особых различий при воздействии всего диапазона радиоволн ВЧ, УВЧ и СВЧ, но более характерны проявления и неблагоприятны последствия воздействий СВЧ электромагнитных волн.

Наиболее характерными при воздействии радиоволн всех диапазонов являются отклонения от нормального состояния центральной нервной системы и сердечно-сосудистой системы человека. Общим в характере биологического действия электромагнитных полей радиочастот большой интенсивности является тепловой эффект, который выражается в нагреве отдельных тканей или органов. Особенно чувствительны к тепловому эффекту хрусталик глаза, желчный пузырь, мочевой пузырь и некоторые другие органы.

Субъективными ощущениями облучаемого персонала являются жалобы на частую головную боль, сонливость или бессонницу, утомляемость, вялость, слабость, повышенную потливость, потемнение в глазах, рассеянность, головокружение, снижение памяти, беспричинное чувство тревоги, страха и др.

К числу перечисленных неблагоприятных воздействий на человека следует добавить мутагенное действие, а также временную стерилизацию при облучении интенсивностями выше теплового порога.

Для оценки потенциальных неблагоприятных воздействий электромагнитных волн радиочастот приняты допустимые энергетические характеристики электромагнитного поля для различного диапазона частот - электрическая и магнитная напряжённости, плотность потока энергии.

Защита от электромагнитных полей радиочастот

Для обеспечения безопасности работ с источниками электромагнитных волн проводится систематический контроль фактических значений нормируемых параметров на рабочих местах и в местах возможного нахождения персонала. Если условия работы не удовлетворяют требованиям норм, то применяются следующие способы защиты:

1. Экранирование рабочего места или источника излучения.

2. Увеличение расстояния от рабочего места до источника излучения.

3. Рациональное размещение оборудования в рабочем помещении.

4. Использование средств предупредительной защиты.

5. Применение специальных поглотителей мощности энергии для уменьшения излучения в источнике.

6. Использование возможностей дистанционного управления и автоматического контроля и др.

Рабочие места обычно располагают в зоне минимальной интенсивности электромагнитного поля. Конечным звеном в цепи инженерных средств защиты являются средства индивидуальной защиты. В качестве индивидуальных средств защиты глаз от действия СВЧ-излучений рекомендуются специальные защитные очки, стёкла которых покрыты тонким слоем металла (золота, диоксида олова).

Защитная одежда изготовляется из металлизированной ткани и применяется в виде комбинезонов, халатов, курток с капюшонами, с вмонтированными в них защитными очками. Применение специальных тканей в защитной одежде позволяет снизить облучение в 100-1000 раз, то есть на 20-30 децибел (дБ). Защитные очки снижают интенсивность излучения на 20-25 дБ.

В целях предупреждения профессиональных заболеваний необходимо проводить предварительные и периодические медицинские осмотры. Женщин в период беременности и кормления грудью следует переводить на другие работы. Лица, не достигшие 18-летнего возраста, к работе с генераторами радиочастот не допускаются. Лицам, имеющим контакт с источниками СВЧ- и УВЧ-излучений, предоставляются льготы (сокращённый рабочий день, дополнительный отпуск).